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The sequencing of data flow tasks in SIGNAL:

application to active vision in robotics
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Abstract

Many applications of real time systems feature a
combination of “continuous” (possibly sampled) and
discrete (sequencing and task control) behaviors, both
reactive to the evolutions of the execution environ-
ment. In particular, robotics applications involve the
programming of the control functions for each task,
and the sequencing of such tasks at a higher level

In the framework of the real time synchronized data-
flow language SIGNAL, we propose extensions based on
time intervals, enabling the specification of tasks, and
of their suspension or abortion for their sequencing
This paper illustrates
the application of these constructs to active vision in

i reaction to discrete events.

robotics, where successive phases have to be sequenced,
each associated with a particular control law, in order
to recognize a complex environment.

1 Reactivity and robot programing
Reactivity is an essential aspect of real time sys-
tems, and the analysis of their safety requires an un-
derlying formal model. Synchronous languages aim at
providing a complete framework for the specification,
verification and execution of such real time applica-
tions [7]. Among them, SIGNAL is a real-time syn-
chronized data-flow language [10]. Its model of time
is based on instants, and its actions are performed
within the instants. However, various application do-
mains such as signal processing and robotics require
the possibility of specifying behaviors composed of the
succession of different modes of durative interaction
with their environment.

1This work was partly supported by the CNRS inter-PRC
project VIA (Vision Intentionnelle et Action).
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To this purpose, we introduce the notion of ttme in-
terval, defined by a start and an end event [11]. Asso-
ciating a time interval to a data-flow process specifies
a task i.e., a non-instantaneous activity and its execu-
tion interval. Hence, it is possible to specify the se-
quencing of data-flow tasks, declaratively, themselves
possibly involving a sequencing of sub-tasks, by con-
straining their intervals. In particular, it is possible to
specify hierarchical, parallel automata. Both the data
flow and the sequencing aspects are in the same lan-
guage framework, thus relying on the same model for
their execution and the verification of the correctness
of programs.

Task-level programming of robots consists in
specifying robot tasks and sequencing them i.e.; as-
sociating them with modes on which they are enabled
[4]. A robot task is a data flow function computing the
flow of values of control to the actuator from the flow
of sensor input data. For example, movements toward
some point can alternate with prehension tasks, or as-
sembly of objects. The transition between the various
execution modes is driven reactively by the reception
of externally sensed, or internal information [3].

Our task structure applies well to robotics by en-
coding the data flow task functions as well as their
hierarchical sequencing within the same framework as
shown by an application to a perceptive strategy of a
static environment in an active vision context [9].

Related work. Robot programming involves the
discrete event driven sequencing of robot tasks imple-
menting a continuous task control function [4]. This
duality between immediate reaction to events and du-
rative execution of a task function can be handled by a
synchronous/asynchronous approach [3] where the be-
havior is encoded in a synchronous automaton, while
asynchronous external processes implement durational
control laws. However, the disadvantage is that the



two aspects are developed in separate languages and
models, thus making analysis of interactions difficult.
Synchronous programming languages are either im-
perative or declarative (data flow) [7].

The advantage of the constructs we proposed is
that they enable both the specification of the func-
tions relating input and output values (data flow), and
that of the transition between different such behaviors
(sequencing), within the same programming language
framework. An approach related to ours integrates
ARGoOs (hierarchical parallel automata) with LUSTRE
(data flow) [8]; we try to specify sequencing in a more
declarative style.

2 Data-flow, intervals and tasks

Data flow applications are activities executed
over a set of instants in time i.e., non-instantaneously:
at each instant, data is acquired from the execution
environment, and processed along a network of oper-
ators, in order to produce output values.

SIGNAL [10] is a synchronous real-time language,
data flow oriented (i.e., declarative) and built around
a minimal kernel. It manipulates signals, which are
unbounded series of typed values, with an associ-
ated clock determining the instants where values are
present; for instance, a signal X denotes the sequence
(x¢)ter of data indexed by time ¢ in a time domain
T. Signals of a special kind called event are charac-
terized only by their clock i.e., their presence (they
are given the boolean value true at each occurrence);
given a signal X, its clock is obtained by the expres-
sion event X, giving the event present simultaneously
with X. The constructs of the language can be used
to specify, in an equational style, relations between
signals i.e., between their values and between their
clocks. Systems of equations on signals are built us-
ing the composition construct. The compiler per-
forms the analysis of the consistency of the system
of equations, and determines whether the synchro-
nization constraints between the signals are verified
or not. If the program is constrained so as to compute
a deterministic solution, then executable code is au-
tomatically produced (in C or FORTRAN). The com-
plete programming environment also features a graph-
ical, block-diagram oriented user interface, a prover
for dynamical properties of programs, and work is in
progress concerning synthesis of integrated circuits.

The kernel comprises the five following primitives.
Functions are defined on the types of the langua-
ge (e.g., boolean negation of signal E: not E). The
signal (Y;), defined by the instantaneous function f
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in: Vt, i = f(X1,, X2, ..., Xp,) is encoded in S1G-
NAL by: ‘Y := f{ X1, X2, , Xn} ‘ The sig-
nals Y, X1, ..., Xn are required to have the same clock.
Delay gives the past value of a signal Z7X; = X;_1,

with initial value Vp: |ZX := X$1| with initialization
ZX init VO |, X and ZX have the same clock. Selec-

tion of a signal X according to a boolean condition C
is: |Y := X when C |; the operands and the result do
not have identical clock. signal Y is present if and only
if X and C are present at the same time and C has the
value true; when Y is present, its value is that of X.
Deterministic merge defines the union of two signals
of the same type: |Z := X default Y| The clock of
Z is the union of that of X and that of Y. The value of
Z is the value of X when it is present, or else that of
Y if it is present and X is not. Parallel composition of
processes is made by the associative and commutative
operator “|” denoting the union of the underlying sys-
tems of equations. In SIGNAL, for processes P; and P,

it is written: | (| P, | P2 1) | For example equation
r; = xi_1+11salsow; = zx; + 1, z2; = @4_1 1.e. writ-
ten in SIGNAL: (| X := ZX + 1 | ZX := X$1 [).
Furthermore, it is possible to confine signals lo-
cally to a process using “/”: e.g., in the previ-
ous example, hiding ZX gives the following code:
(I X :=2X +1 | ZX := X$1 [|)/ZX.

The rest of the language is built upon this kernel. A
structuring mechanism is proposed in the form of pro-
cess schemes, defined by a name, typed parameters,
input and output signals, a body, and local declara-
tions. Occurrences of process schemes in a program
are expanded by a pre-processor of the compiler. De-
rived processes have been defined from the primitive
operators, providing programming comfort, such as:
synchro{X,Y} which specifies the synchronization of
signals X and Y and X cell B which memorizes (using
a delay) values of X and outputs them also when B is
true. Arrays of signals and of processes have been in-
troduced as well. An example is the simple counter in
Figure 1, where X is the number of occurrences of UNIT

UHIT
] ¥ o= £x+l B
2 | synchro £ x. UNIT 2
|}
2l D oi= W ol #

Figure 1: A counter in SIGNAL.



(as X is incremented by 1 each time it is present, and
it is present each Unit is present), and ZX is initially
0.

A data flow application is executed from an ini-
tial state of it memories at an initial instant a which
is before the first event of the reactive execution. A
data flow process has no termination specified in it-
self: therefore its end at instant w can only be decided
in reaction to external events or the reaching of given
values. Hence w is part of the execution, and the time
interval on which the application executes is the left-
open, right-closed interval Ja,w].

o w
1 -l
J J
I 33 3 —
open I . . .
close I . .

Figure 2: Decomposing Ja,w] into sub-intervals.

Time intervals are introduced in order to enable
the structured decomposition of the interval Jo,w]
into sub-intervals as illustrated in fig. 2, and their
association with processes [11]. Such a sub-interval
I is delimited by occurrences of bounding events at
the beginning B and end E: . It has the
value inside between the next occurrence of B and the
next occurrence of E, and outside otherwise. Like
Ja,w], sub-intervals are left-open and right-closed.
This choice is coherent with the behavior expected
from reactive automata, a transition is made accord-
ing to a received event occurrence and a current state,
which results in a new state: hence the instant where
the event occurs belongs to the time interval of the
current state, not to that of the new state.

The operator defines the complement of

an interval I, which is inside when I is outside and
reciprocally. Operators |open I| and |close I| re-
spectively give the opening and closing occurrences of
the bounding events. Occurrences of a signal X inside

interval I can be selected by , and recipro-

cally outside by . In this framework, open I

is B out I, and close IisE in I.

Tasks consist in associating some (sub)process of
the application with some (sub)interval of Jar,w] on
which it is executed. Tasks active on Ja,w] represent
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the default case: they are remanent throughout the
whole application. Inside the task interval, the task
process is active i.e., present and executing normally.
Outside the interval, the process is inexistent i.e., ab-
sent and the values it keeps in its internal state are
unavailable. In some sense it is out of time, its clock
being cut. Tasks are defined by the process P exe-
cuted, the execution interval I, and the starting state
(current, or initial) when (re-)entering the interval.

More precisely, the latter means that, when re-
entering the task interval, the process can be started
at its current state at the instant where the task was
suspended (meaning: in a temporary fashion): this is
written . Alternately, it can be started at
its initial state as defined by the declarations of all
its state variables, if the task was interrupted (mean-
ing: aborted in a definitive fashion): . For
example, the counter of Figure 1 can be transformed
into a simple stopwatch, that runs from a pressure on
a button R, until the next pressure on the same but-
ton, by: COUNT{UNIT} on 1R,R]. This simply spec-
ifies that the counting behaviour is confined on the
interval between occurrences of event R.

The processes associated with intervals can them-
selves be decomposed into sub-tasks: this way, the
specification of hierarchies of complex behaviors is
possible. For example, the simple stopwatch given
above can be re-used into a resetable stopwatch as
follows: (COUNT{UNIT} on ]1R,R]) each ]R,Stop],
where 1R, R] is initially inside. The simple stopwatch
is then re-initialized on each entering 1R, Stop].

Task control is achieved as a result of constraining
bounding events of intervals, and associating activi-
ties to them, either to be suspended or aborted. Par-
allelism between several tasks is obtained naturally
when tasks share the same interval, or overlapping in-
tervals. Sequencing tasks then amounts to constrain-
ing the intervals of the tasks. Using on and each as
above already enables controlling activities; more elab-
orate behaviors can be specified as follows. This way,
it is possible to specify hierarchical parallel automata
or place/transition systems.

S1

(52}
_/

Figure 3: Transitions between states.



Each time interval holds some state information,
and events cause transitions between these states. In
the simple timeout behavior illustrated in Figure 3,
a transition leads from state S1 to state S2 on the
occurrence of an event E, except if the event C occurs
before. This can be coded by two intervals such that
the closing of the one on the occurrence of event E is
the opening of the other one, as follows:

(] s1 := 14 , E default C]
| S2 := ]E in S1, B] )

An encoding of intervals and tasks into the SIGNAL

kernel exists [11].

3 Application to active robotic vision

The sequencing of synchronous data flow tasks has
been applied to a robot vision problem : the 3-D struc-
ture estimation of a set of geometrical primitivesin an
active vision context.

Active robotic vision The observability of the
camera motion which is necessary for the structure
estimation characterizes a domain of research called
dynamic vision [5]. When the camera motion is con-
trolled using vision data, dynamic vision becomes ac-
tive vision [1][12] which generally provides more pre-
cise results. Such camera motions are performed using
the visual servoing approach i.e, using a control law
in closed loop with respect to vision data [6].

The aim of this scheme is to obtain a complete and
precise description of a 3-D scene using the visual data
provided by a camera mounted on the end effector of
a robot arm. In particular, we are interested in the
reconstruction of a nuclear plant environment, consti-
tuted by a set of cylinders.

the limbs of the cylinder in the image

Figure 4: Cylinder in a nuclear plant environment (the
white straight lines represent the limbs of the cylinder)
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In order to obtain a precise estimation of the struc-
ture of a selected primitive, we have shown that it
is necessary that the camera focus on it and realize
particular motion [2]. For example, a cylinder must
always appear centered and horizontal or vertical in
the image sequence (see figure 4) and the camera has
to turn around it in order to obtain a non-biased and
robust estimation of its radius and spatial localisation.
This optimal estimation process can be divided into 3
parts (see figure 5) : an estimation based on only one
of the two limbs of the cylinder is performed (&, ). It
allows us to compute the position of the second limb
in order to get a better estimation based on the two
limbs (&.,). The last step consists in acquiring the
length of the cylinder (&).

exploration

7

p(T) =10

Gd given segment

rough estimation ‘

p(T)# 0

structure estimation

end optimal
estimation

optimal estimation

@
@ |62|<5'

Figure 5: Automata network

In order to obtain a complete estimation of the
scene, the optimal estimation process has to be suc-
cessively realized for each primitive of the scene. So
we have developped a method for connecting up sev-
eral estimations [9]. It is based on image data and on
a rough estimation of the structure of the other prim-
itives. For a given position T of the camera, a data
base p(T') containing the observed segments is created.
These segments fit with the limbs of the cylinders. A
selection process (C) chooses one of the segments, then
the camera focuses on it and the optimal estimation
process provides a robust estimation of the parameters
of the corresponding cylinder.



At the same time, a rough estimation (€,) of the
structure of the others primitives is done (rough since
the camera motion is not optimal for these other prim-
itives). It gives us information about the scene which
will be used in an exploration process. Every optimal
estimation ends when all the cylinder parameters have
been computed. The data base is then updated and a
new segment is chosen (C). When all the data base ele-
ments have been treated, an ezploration process (Exp)
is required in order to ensure that the whole scene has
been estimated.

Application Programming. This method has be-
en implemented with an automata network using the
real time language SIGNAL and the notion of time in-
terval defined above. These automata are able to con-
nect up the different stages of the reconstruction pro-
cess (selection, focusing, optimal estimation of the se-
lected primitive and concurrently, rough estimation of
the other ones) and to provide a robust estimation of
the spatial organisation of the scene. These automata
network, which manage the tasks sequencing, and the
estimation tasks has been written in SIGNAL using the
sequencing of data flow tasks describe above.

At this step of the description, we provide a part
of the SIGNAL code to illustrate the feasability of en-
coding such an automata network with our approach
based on time interval description (cf table 1).

Let us now examine the interests in using the SiGg-
NAL language for a robot vision application :

e with synchronous languages, a mathematically
well defined semantics is at basis of the language
implementation. When compiling, SIGNAL code
is translated into a graph on which correctness
proofs can be performed and dynamical proper-
ties can be proved ;

e SIGNAL is an equational data flow language and,
as we said above, our estimation tasks are per-
formed using control laws in closed loop with re-
spect to vision data. The implementation of such
a loop is very easy to express in SIGNAL. More-
over, the data flow structure of the estimation
algorithm which uses at any time ¢ the informa-
tion given by the camera and the parameters es-
timation at time ¢ — 1 matches to the language
philosophy and the delay operator ;

e when the automata network specification is done,
programming such an automata is quite easy
when using the time intervals describes above.
The source code, in SIGNAL, of the application is
very close to the specification because program-
ming is performed via the specification of con-
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(I Ig :=] when p(T) =0, when p(T)#0 ]

init inside
| Iggc := compl Ig
| Exploration each I

| Structure estimation each Iggc |)

Structure estimation
I I¢

:= | length performed, Segment choosen ]
init inside

| Ig := compl Ig

| New Choice each Ig

| Primitive estimation each Ig |)

Primitive estimation
(| Optimal _estimation
| (|Rough_estimation;|...|Rough estimationy|)|)

Rough estimation;

(I Iz, :=] (Findnewsegment in Ig),
(Segment lost in Ip) ]
| Rough estimation each Ig_  |)

Optimal estimation
(0 1y,
Accuracy.reachedl :=

:= ] close g;, Accuracy.reachedl ]

when |precl<e |)

I (I Ig, :=1] close Tg, Accuracy reached? ]

when |precl<e’ |)
:=] close I, , length performed ]
when g(p(Ty)) 1D 1)

Accuracy.reached2 :=

Ig,
length performed :=

Il

Table 1: Program for the application

straints or relations between all the involved sig-
nals.

e specification of the time interval corresponding to
the rough estimation tasks, which must be per-
formed in parallel with the optimal estimation
tasks, does not raise any problem (except the fact
that dynamic creation of a new process is not pos-
sible). We have here a parallelism of specification,
and the compiler manages all the synchronisation
and communication problems.
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Figure 6: FEstimated position parameters and radius
estimation of a set of 3 cylinders



Experimental Results Figure 6 shows the result
of the 3-D reconstruction of a scene made up with 4
cylinders. The experimental results depicted in fig-
ure 6 show the position parameters of the cylinder
(20, Yo, z0) and the radius r computed at each itera-
tion and expressed in the initial camera frame. This
real experiment has been done on a an experimen-
tal testbed constituted by a CCD camera mounted
on the end effector of a 6 dof robot. The sequencing
of the estimation tasks is written with SIGNAL, but
the reconstruction tasks themselves are not yet im-
plemented with this language, even if they have been
implemented in simulation to show the feasability of
programming such tasks with SIGNAL.

Figure 7 shows the results of the rough estimation
of the second cylinder parameters in parallel with an
optimal reconstruction of the first one, then the opti-
mal reconstruction of the second cylinder: note that
the rough estimation (see figure 7) is far worse than
the optimal estimation. It underlines the fact that
active vision can significantly improve the estimation
accuracy.

/ 5.00 10,00 20,00
second cylinder yO

rough estimation

time

\son
second cylinder yO
first cylinder  yO

optimal estimation

Figure 7: Rough estimation of the second cylinder pa-
rameters in parallel with an optimal reconstruction of
the first one, then the optimal reconstruction of the
second cylinder

4 Conclusion

We presented a language-level integration of the
data flow and sequencing paradigms, and its appli-
cation to the sequencing of robot tasks in active vi-
sion. It is specified in terms of time intervals in the
framework of an instant-based synchronized data flow
language: SIGNAL. Its constructs enable the designa-
tion of time intervals, their association with data flow
processes in order to form tasks, and the sequencing of
these data flow tasks. This work is part of a global ap-
proach concerning the specification of dynamical be-
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haviors of real-time systems.

The application of these constructs to robotic vi-
sion demonstrates its adequacy for task-level robot
programming. Tasks appear to be particularly fit-
ting to the data flow nature of the control functions
between sensor data and control output, while con-
straining their execution intervals makes it possible to
specify the sequencing of robotic tasks.
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