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TRACKING A MOVING OBJECT BY VISUAL SERVOING

F. CHAUMETTE and A. SANTOS

IRISA / INRIA Rennes, Campus de Beaulieu, 35042 Rennes Cedex, France.

Abstract. This paper deals with target tracking by visual servoing. We first briefly describe the visual
servoing approach and the application of the task function concept to vision-based tasks. Next, we present a
complete control scheme which explicitly enables to pursue a moving object. This control scheme is based on
the estimation and prediction of the target motion in the image through Kalman filtering. Finally, real-time
experimental results using a camera mounted on the end effector of a six-d.o.f. robot are presented.
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1 INTRODUCTION

Recent advances in vision sensor technology and
image processing now allow the effective use of vi-
sual data in the control loop of a robot. In robotics
applications, this enables us to handle uncertain-
ties and/or changes in the environment (for exam-
ple, to compensate for small positioning errors, to
grasp objects moving on a conveyor belt, etc.).
Concerning vision aspects, it becomes possible to
control the camera motion in order to improve
recognition, localization or inspection of the en-
vironment.

In this paper, we present an adaptive and predic-
tive vision-based control scheme which facilitates
various robotics tasks such as positioning a cam-
era with respect to a moving object. This con-
trol law computes the components of the camera
velocity ensuring an exponential decrease of the
task function error. In order to take into account
the unknown motion of the target, which gener-
ally induces tracking errors, an estimation scheme
of the resulting motion in the image is proposed.
To compensate for this motion, its prediction, ob-
tained through augmented Kalman filtering with
a constant acceleration state model, is introduced
in the control law. The experimental results de-
scribed at the end of this paper show the robust-
ness of the proposed control scheme with respect
to noise and mismeasurement.

2 VISUAL SENSING AND TASK FUNCTION

The work described in this paper is based on the
visual servoing approach. In this approach (Weiss

and Sanderson, 1987; Feddema and Lee, 1989; Pa-
panikolopoulos et al., 1991; Espiau et al., 1992),
vision data is modeled as a set s of elementary
visual signals which only depends on the relative
position and orientation between the camera and
the scene (for example, s may be chosen as the
coordinates of a point, or the parameters describ-
ing a straight line, an ellipse, etc.). For a given
vision-based task, a desired target image is iden-
tified, consisting of a chosen set of values, s* (cor-
responding to a good achievement of the defined
task). Considering the desired target image and
the image currently observed by the camera, the
control problem is then reduced to the regulation
in the image of (s — s*).

Referring to earlier developments (Espiau et al.,
1992), the time variation of s can be modeled
through:

5 =L T, (1)
where

o T =(V,Q) is the velocity screw quantifying
the relative motion between the scene and
the camera (V and Q respectively represent
the translational and rotational components
of T);

e LT called the interaction screw related to s,
completely characterizes the interaction be-
tween the sensor and its environment and
can be explicitly computed for the parame-
ters describing the projection in the image of
geometrical primitives such as points, lines,
circles, etc.

More precisely, let us now consider the situation
r of the camera with respect to a reference frame,



and the camera velocity screw, 7., with T, = %.

We have s = s(r(t),t), thus 5 has the following
form:

0s
E ) (2)

where g—f represents the contribution of the object
motion in the image.

5=LI T.+

Applying the task function approach developed by
Samson et al. (1990) to the case of visual sensor,
we define a vision-based task function e(r(t),t) of
the form (Espiau et al., 1992):

e =LA£TJr (s(r(t),t) — s%) ,

(3)

—+
where LT is the pseudo-inverse of a chosen model

o~ o~
of LiT (LY LT =T) and can be considered as the
inverse Jacobian matrix related to the task.

For simplicity, we do not present here the redun-
dancy framework of the task function approach,
using which it is possible to combine a vision-
based task described by (3) with another task
(such as, for example, a desired camera motion us-
ing the non-constrained camera d.o.f.), even if all
the results developed further remain valid for such
a framework (see Santos and Chaumette, 1992).

3 CONTROL SCHEME

Considering the control problem as a closed loop
regulation of e, we can ensure that the task e is
perfectly achieved if, at each time ¢, e(r(%),t) = 0.
In order that e exponentially decreases, and then
behaves like a first order decoupled system, the
desired evolution of e takes the form:

é=—-Ae with A>0.

(4)

Since e is function of r and ¢, we have:

. _ [Oe e
€= (6r> Te + 3 - (5)

Furthermore, the camera velocity T, is related to
the position of the robot joints ¢ through the rela-
tion ¢ = J~!(q) T., J~! representing the inverse
Jacobian matrix of the robot. We will assume that
this Jacobian is known and is non-singular, and
that the accessible parameter to control the robot
is the robot desired joint kinematics ¢ , as it is
generally the case in most industrial applications.
Considering the desired camera velocity vector 7T,
as the pseudo-control term, from (4) and (5), we

have:
—~\ + —
Oe : Oe

€

where
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3—§ can be taken as the identity matrix I
under certain conditions described by Sam-
son et al. (1990), particularly in our vision-

based task case;

Misa proportional coefficient involved in the
exponential convergence of e, and which has
to be tuned in order to preserve the stability
of the system and to optimize the time to
convergence of the task function (see Santos
and Chaumette (1992) for more details on
this tuning); and

%, on which we will now focus, is the esti-
mate of the contribution of the target mo-
tion to the control law.

Chaumette et al. (1991) describes such an estima-
tor which only requires the measurement of the
successive visual data. However, this estimation
scheme enables to pursue a moving target without
tracking errors only if that target has a constant
velocity. In order to consider more complex situa-
tions, let us now assume that the camera motion
T., due to the applied control law, can also be
measured through the successive position of the
robot joints. In that case, using equation (5), we
can easily compute an estimate of the target mo-
tion in the image and we obtain:

de\ _+ [oe

After discretization, this relation becomes:
de de
<a> <§> TC(k_l) -
(k) (k)

(8)
Remark:. Let us assume that the object is mo-
tionless and that the camera observes s;_; at the
sampling period (kK — 1)At. Using a first order
approximation leads to:

(7)

_ &) T Ek-y
B At

(9)

Using (2) and (3), we obtain the following predic-
tion of the task function value:

S(k)/(k—1) = Sk—1 T 8 At .

—

(k) /(h—1) = Ek—1) + L

—

Lg(k)Tc(k—l)At (10)

+
(k)

The estimator of the target motion can thus be

written:
3
ot
(k)

which represents (modulo the sampling period)
the discrepancy between the actual measure of the

_ &r) T &)/ (k-1)

At (11)



task function value and the predicted one. We
note that this discrepancy is null if the target is
motionless, and constant if the target velocity is
constant. Its evolution thus has the same model
that of the target motion.

Furthermore, a prediction of the position s of the
visual features in the image is given by the re-
lation (9). Its benefit comes from on the fact
that searching for image features is generally time-
consuming. This searching time is highly reduced
using the obtained prediction for the next image,
whose processing is then reduced, after the nec-
essary recognition stage, to a simple verification
process (Feddema and Lee, 1990). Furthermore,
in case of mismeasurement, the predicted position
in the image enables to pursue the target tracking
by ensuring that it is a sufficiently good estima-
tion.

Let us now come back to the control point of view
and let us consider robustness issues. Two differ-
ent sources for noise are possible in our estimation
scheme: it can be either introduced through the
extraction of the visual data or due to robot joint
position measurement errors.

According to several works investigating the field
of filtering for target tracking (Blackman, 1986;
Hunt and Sanderson, 1982), two common ap-
proaches are employed: the first consists in us-
ing fixed tracking coefficients (o — 3, a — 8 — v
trackers), and the second, Kalman filtering, gen-
erating time-variable tracking coefficients that are
determined by a priori models of target dynam-
ics. While the first approach has computational
advantages, the second one seems much more ap-
pealing, thanks to the adaptability of its coef-
ficients for tracking highly maneuvering targets.
However, implementing a Kalman filter requires
first to define, or estimate, the state model evo-
lution of the parameters, the simplest cases for
motion parameters being the constant speed and
constant acceleration models.

When a target maneuvers (for example when
abrupt changes in its acceleration occur), a track-
ing filter should respond. Such maneuvering may
be detected by a rapid increase in the normal-
ized discrepancy. The recommended methods for
dealing with those situations are numerous (Black-
man, 1986; Brown et al., 1989) and we have cho-
sen, for robustness issues, to consider model ma-
neuvers as “colored noise”. In particular, tar-
get acceleration can be considered as a zero-mean
first order Markov process (directly if referring
to Singer’s model (Singer, 1970), or indirectly
through the Kalman augmented filter (Hunt and
Sanderson, 1982)). We have implemented the lat-
ter approach, with a constant acceleration state
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model, the equations of which are given by:

( (%)(k-i-l) - (%)(k)+At(%)(k)+z(k)7

< Ykt P Yy V1

L (g;%)(k-i-l) - (g;%)(k)+u—2(k)’
(12)

where p is the degree of correlation between suc-
cessive accelerations and can range from 0 to 1
(0.3 in the experiments described below), v; and
vy are the zero-mean gaussian white noises on the
chosen model. Furthermore, the relation involved
in the Kalman filter relating the observed data to
the chosen model is given by:

De ) |
ot (k) ot (k) el
where 2¢

5; s the estimated value of the target mo-
tion obtained with (8), and where w is the zero-
mean gaussian white noise on the observations.

(13)

—

Finally, let us note that the control law given
by (6) is insufficient to compensate for possible
tracking errors due to non-zero target accelera-
tions. To overcome this problem, the prediction of
the target motion, provided by the Kalman filter,
can be used; this leads to the following relation
defining our complete adaptive predictive control
law:

; de
Tery = —Aw) €y — (a)

4 EXPERIMENTAL RESULTS

(14)
(k+1)/ (k)

The chosen task for validating the proposed me-
thod is a classical one and consists in the gaze
control of a camera in order to pursue a moving
target (see Vieville and Faugeras (1991) for the de-
scription of a reactive vision system used for stereo
gaze control and more complex sensing behaviors).
More precisely, the visual data used in the vision-
based task are the coordinates of the center of
gravity (CG) of the projection of the target in the
image: s = (X.,Y.)T; the desired image position
is such that the object lies on the optical axis of
the camera: s* = (0,0)T (approximatively, in the
middle of the image), and the two controlled d.o.f.
are the camera pan and tilt. The corresponding
interaction matrix LT takes the form (see Santos
and Chaumette (1992)):

X.Y. —(1+ X2)

L] = (15)

(1 + Y?) _Xchc



In this case, the model of the interaction matrix
LT involved in (3) can be chosen equal to the real
Lg, so the corresponding task function is defined

() )

" ( (16)

Experiments have been split into two cases: in the
first one, the non-constrained camera d.o.f. are
used to simulate target motions (at constant ac-
celeration with abrupt changes in speed or acceler-
ation). In the second one, combined with the pre-
vious motions, the target lying on a record player
(see Fig. 1) has a sinusoidal projected motion.

X
Y.

Ye/(14+ X2 +Y2)
-X./(1+X2+72)

€

Due to the simplicity of the considered scene and
the prediction of the next target position, let us
note that it was possible to realize the presented
results at video rate (50Hz).

4.1 Simple target motions (see Fig. 2)

In this case, the camera first performs a trans-
lation along the optical axis in the forward and
then backward (Fig. 2.f, iteration 0 to 500), fol-
lowed by rotations around the optical axis in the
two different senses (Fig. 2.e, it. 500 to 1000),
and then simultaneous translations parallel to the
image plane (Fig. 2.f, it. 1000 to 2000). At the
beginning of the experiment, the camera was cor-
rectly positioned with respect to the object. That
is why there is no initial error on Fig. 2.a where
the time variation of (s — s*) (that we want to
always vanish) is plotted.

As expected, there is no measured motion (Fi-
g. 2.c, it. 0 to 1000) and no task function error
when the camera is translating along or rotating
around the optical axis. Indeed, these motions
does not modify the position in the image of the
CG of the target. When translations parallel to
t/}le image plane are performed, the estimation of

% is done well, and correctly filtered (see Fig. 2.c

and 2.d). Furthermore, the task function is regu-
lated to zero after few iterations due to the recon-
figuration of the Kalman filter parameters. This
reconfiguration time is due to the fact that, when
a jump in the target motion occurs, an update of
the effective on-line acceleration (to be estimated)
is not immediately taken into account.

It is worth noting that the prediction of the po-
sition of the visual features, which are generally
within +2 pixels (see Fig. 2.b where the discrep-
ancy between the measured and predicted values
are plotted), is sufficiently accurate to reduce sig-
nificantly the searching area in the image, thus
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reducing the required time for image processing.
Besides, the reconfiguration period of the Kalman
filtering parameters does not affect it, due to the
fact that this prediction only works with on-line
measurements.

4.2 Complex target motions (see Fig. 3)

In this experiment, the target is moving with a
sinusoidal motion due to rotations of the record
player (20 tpm) and complex translational mo-
tions in different directions are simultaneously
performed on the camera to simulate extra tar-
get motions. Since the target is moving before the
beginning of the gaze control, the initial target
position in the image is far away from the desired
one (about 200 pixels in the presented example).

The obtained results are satisfactory, even if not
perfect. Firstly, the convergence phase, similar to
a saccade (iteration 0 to 40, i.e. 800 ms) is per-
fectly achieved in spite of the simultaneous target
motion. After the convergence, the task function
error, which is the best indicator of the achieve-
ment of the target tracking, remains within +10
pixels (see Fig. 3.a) in spite of the complex target
motion in the image (see Fig. 3.c where the time
variation of its filtered value is plotted). The ob-
served residual errors are due to the fact that the
target motion follows a non-linear model, espe-
cially due to the sinusoidal motion. The constant
acceleration state model chosen for the Kalman fil-
ter is thus insufficient in that particularly bad case
to perfectly compensate for target motion with
continuous changes in accelerations. The stability
of the system is however preserved and the pre-
diction of the position of the target in the image
again remains within +2 pixels (see Fig. 3.b).

Improving these results would consist in identi-
fying a non-linear model, thus leading to an ex-
tended Kalman filter based on the estimation of
the pulsation and the amplitude of the sinusoidal
motion. Such a method should bring better re-
sults for the presented case, but can be expected
to be more time-consuming and less general than
the proposed one.

Let us finally note that more detailed results are
presented in Santos and Chaumette (1992).

5 CONCLUSION

We have presented in this paper a visual servoing
scheme using the task function approach. This
scheme specifies the task problem in terms of a
regulation in the image using 2D visual data. We
have proposed a new adaptive and predictive con-
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Fig 3: Tracking with complex target motions
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trol law based on this approach which enables to
track an object with unknown motion. For doing
that, a robust estimation and prediction scheme of
the target motion in the image has been presented
and introduced in the control law.

Experimental results outline the fact that the esti-
mation through Kalman filtering based on a con-
stant acceleration state model with colored noise is
sufficiently efficient to track a highly maneuvering
target, even in the presence of noise or mismea-
surement.

Nevertheless, when target abruptly maneuvers, a
reconfiguration of the filter parameters actually
necessitates a few iterations of the control law.
The probabilistic jump in the parameter detec-
tion approach (Basseville and Benveniste, 1983)
may improve the behavior of the estimator, mainly
through Hinkley’s Cumulative Sum for the jump
detection and Willsky’s Generalized Likelihood
Ratio algorithm (Willsky et al., 1982) for the es-
timation of the jump magnitude. Indeed, this ap-
proach facilitates the detection of changes in the
nature of the target motion (for example, a con-
stant velocity followed by a constant acceleration)
and the automatic selection of the new adequate
filter parameters. Thus it should be possible to
pursue a hypothesis tree of parallel state models,
based on both constant speed and constant ac-
celerations models (and more complicated ones, if
necessary), in order to combine their respective
advantages and select the one which is the more
appropriate for the current target motion. That
will be the future step of our study.
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