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Abstract

A method for the reconsiruction and localization of
geometrical primitives using active dynamic vision is
presenied in this paper. Our approach is based on the
use of the interaction matriz related to the visual data
describing a primitive. Next, active vision is consid-
ered by computing adequate camera motions with a
control law tn closed-loop with respect to visual data.
Simulation results on the localization of @ sphere are
presented and show that active vision can to a large
eztent improve the accuracy of the structure estima-
tion.

1 Introduction

A recent expansion of computer vision and image
analysis is related to the estimation of 3D structure
from image sequences. Using information extracted
from an image sequence and the measure of successive
positions of a moving camera (for example mounted
on a mobile robot) aims at providing a clear and com-
plete description of the camera environment. A great
deal of effort has been concentrated on two main ap-
proaches:

- the discrete approach where images are acquired at
discrete events and where camera motions may be
large between two successive image acquisitions. This
approach is based on the assumption that selected fea-
tures generally persist from image to image and is con-
fronted with the difficult inter-image correspondence
problem [7] [4] [15].

- the continuous approach where images are acquired
at the video rate FSI]) [16]. In this case, the emphasis
is placed on the evaluation of the optical flow field [6]
[13] which is generally noisy and partially incorrect es-
pecially near occlusion or motion boundaries. Thus,
the main problem encountered by this approach lies
on its sensitivity to noise.

The observability of the camera motion, which is
necessary for structure estimation, characterizes a re-
cent research domain called “dynamic vision”. Fur-
thermore, if together with this observability the mo-
tion can also be controlled using vision data, dynamic
vision becomes “active vision” [1] (2] [12] [3]. The pur-
pose of active vision is to manipulate the constraints
underlying the observed phenomena, to improve the
quality of perceptual results.

The aim of this work is to investigate the problem
of recovering spatial structure using active vision. In
this paper, the problem of 3D reconstruction and lo-
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calization of geometrical primitives is examined under
two different aspects:

- modelling aspect which consists in establishing a gen-
eral method for three-dimensional reconstruction by
dynamic vision;

- optimization aspect which consists in improving the
performance of the proposed method by active vision.

2 Structure from motion using dyna-
mic vision
2.1 Modelling

Let us consider a geometrical primitive Py of the
scene. Its configuration is specified by an equation of

the type:
(1)

where z = (z y z)T are the coordinates of a point in
the scene, h defines the kind of the primitive and the
value of p stands for its corresponding configuration.

Let us now denote P; as the projection of P, onto
the image plane. The configuration of P; can be writ-
ten in the form:

h(g,g):o, Ve € P,

9 X,P)=0, VXeP;i )
where X = (X Y)T are the coordinates of a point in
the image plane, g defines the kind of the image prim-
itive and the value of P represents its configuration.
Furthermore, we can define a function g, which
links the points belonging to P, with the points be-
longing to P;, such that [9]:
®3)

z=p(X,p,))

where the parameters p, depend on p.

Remark: For a plane primitive, the function p
represents the plane in which the primitive lies.
For a three-dimensional primitive (sphere, cylinder,
torus,...), the function g(X,P) is the limb equation
(we only consider the contour of P;) and the match-
ing between 3D points and contour points provides the
function p(X, po) which is thus called the limb surface.

Let T=(Va Vy V, Qz QZ)T be the camera ve-
locity where V, VZ,, V, and 2y, 2y, 2, are respectively
its translational and rotational components. The time
variation of the parameters P, which links the motion



in the image with a camera motion T, can be explicitly
derived [9] and we obtain:

P=LL(Pp)T (4)

where Lg, called interaction matrix related to P, fully

characterizes the interaction between the camera and
the considered primitive.

We are now able to present a general method to
localize a geometrical primitive by dynamic vision (i.e.
to compute the value of p using the measure along
an image sequence of the camera velocity T' and of
the image parameters P and P). It consists of the
following steps:

- Step 1: Using the implicit function theorem, we
obtain from (4):

po=po (T, B, P) (5)

- Step 2: Next, knowing g(X, P) and u(X, p,) and
using geometrical constraints related to the consid-
ered primitive, we can achieve the parameters p which

completely define its configuration:
p=p(L po) (6)

From a geometrical point of view, this continuous ap-
proach remains to determine the intersection between
a generalized cone (defined by its vertex located at
the optical center and the function ¢g(X, P)) and the
limb surface given by the function u. On the other
hand, the discrete approach is based on the intersec-
tion between two generalized cones (one for each cam-
era position) and therefore seems more complicated
for achieving explicit results in the case of complex
primitives.

This approach has already been used in the particu-
lar case of points and segments [8] [16]. In [5] to which
we refer the reader for more details, we have used the
two steps described above to recover the structure of
non-polyhedral primitives such as circles, spheres and
cylinders. In the next section, we give the obtained
results for one of these primitives: the sphere.

2.2 Case of a sphere

We have chosen a position between the camera and
the sphere as shown in figure 1. The sphere and the
camera are represented in the left-hand part of this
figure. The resulting image seen by the camera is de-
picted in the right-hand side of the same figure.

From this position, we apply a motion to the cam-
era (in the present case V; =V, = V, = 0.5 em/s and
; = Qy = Q, = 3 dg/s) and, at each iteration, we
apply the method described above in order to obtain
the parameters which define the sphere (i.e. the coor-
dinates zo, yo, zo of its center and its radius »). The
results are shown in figure 2: in the left-hand part, the
value of o, Yo, 20 and 7 (in cm) computed at each it-
eration and expressed in a reference frame (the values
should thus be constant since the sphere is motionless)
and, in the right-hand part, the error between these
computed values and the real ones.

Figure 1: Position between the camera and the sphere

Figure 2: Reconstruction of a sphere by dynamic vi-
sion

In that case where none strategy for the camera
motion is defined, we observe important errors. We
will see in the next section that these results can be
greatly improved by using active vision.

3 Structure from motion using active
vision

As a matter of fact, it has been observed that the
quality of estimation through a monocular image se-
quence is very sensitive to the successive motions of
the camera [8]. Therefore, the goal in 3D reconstruc-
tion by active vision is to find an optimum motion
which gives a better estimation of the spatial struc-
ture. The problem is stated in terms of the minimiza-
tion of the errors inherent to the process.

3.1 Suppression of the discretization er-
ror

The main error encountered in structure from mo-
tion using dynamic vision comes from the discretiza-
tion error. Indeed, our method is based on the mea-
sure of P, i.e. the time variation in the image of the
parameters representing the considered primitive. The
exact value of P is generally unrecoverable and the im-
age measurements provide only AP, the displacement
of P between two image acquisitions. Using AP/At
instead of P in the method described above generates
discretization errors which may be important as seen
in the results of the previous section. _

On the other hand, if we ensure that PAt = AP,
the discretization will have no effect. Such a condition



is satisfied if :

b=...=phl=owt

(7
From (4), we have P = f(P,po,T). Thus :

. oF .
ﬁP-F-a—fp'o—i-—fT

P=
=T 8P~ dp " AT

(8)

between two camera positions), then, a sufficient and
general condition to ensure (7) that will suppress the
discretization error is to constrain the camera motions
such that :

©)

The visual servoing approach [14] [10] [9] is per-
fectly suitable to manage such camera motions. In-
deed, this approach enables the establishment of con-
trol laws in closed-loop with respect to visual data.
These control laws automatically compute camera mo-
tions ensuring some particular constraints on the cam-
era environment, as P = 0 and pp = 0 (see [9] and [5]
for more details).

Figure 3, which is structured in the same way as
figure 2 shows simulation results performed using this
strategy. We can see that the discretization errors
vanish and, since the process has been started with the
same camera and sphere positions (see figure 1), we
can observe the very important improvement brought
by our active vision strategy with respect to dynamic
vision.

If we consider 7' = 0 (by settini T as the mean velocity
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Figure 3: Reconstruction of a sphere by suppressing
the discretization error (without noise)

Finally, figure 4 shows similar results when noise is
added to image measurements (uniform noise of 3 pix-
els for a 512 x 512 image) and to the camera velocities
(uniform noise of 2.5% of each velocity component).
This is a rough way of simulating a bad calibration
and measurement errors of the camera motion and of
the acquired visual data. The results presented below
show the robustness of the proposed method.

3.2 Minimizing the effects of the mea-
surement errors

A more robust estimation can be obtained if we
consider particular positions between the camera and
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Figure 4: Reconstruction of a sphere by suppressing
the discretization error (with noise)

the considered primitive. More precisely, the effect of
the different measurement errors, which occur in P,

P and T, upon the estimation of p depends on the

measured values of P, P (which is constrained to zero
in order to suppress the discretization error) and T'

(which is also constrained to ensure that P = po = 0).

Let us denote p as a parameter of the primitive. If
we suppose that errors on P, P and T are not corre-
lated, the uncertainty o, on p can be written in the
form:

e} = m@zaj ma_l?zo,z
@ = Ygglien) + LGen)

+ Y (Y en) (10)
k=1

We have to minimize each term pq; = (56-5—,)2 ,a; €

{P, P, T} with respect to the 2D parameters P. Solv-
ing explicitly this problem is complicated. Therefore,
we just select some image configurations of the prim-
itive that intuitively should provide a better estima-
tion. Then, we check that these configurations mini-

mize each term (i.e. a—;%i = 0 for the selected values

of P). Let us note that we have also verified that all
values of P do not minimize p,; [5]-

In the particular case of a sphere, the effects of
measurement errors are minimized when the image of
the sphere is a centered circle (see Figure 5). Once
more, the visual servoing approach enables to com-
pute camera motions ensuring this constraint between
the camera and the sphere. Figure 6 shows the re-
sults obtained after the convergence of the control law.
By comparing these results with the previous ones we
can notice the important improvement provided by
this strategy. Let us note that similar results have
been obtained for other primitives like points, lines
and cylinders [5].
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Figure 5: Optimal position between the camera and
the sphere
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Figure 6: Reconstruction of a sphere by minimizing
the effects of the measurement errors (with noise)

4 Conclusion

We have proposed in this paper an original method
for 3D structure estimation of geometrical primitives.
More specifically, the interaction matrix provides a
general method valid for complex primitives such as
cylinders, spheres,...

Since the nature of the camera motion affects the
accuracy of the results, we have focused our efforts
on this critical aspect of dynamic vision. We have
shown that, by cleverly positioning the camera using a
control law in closed-loop with respect to visual data,
noticeable improvements have been obtained in the
reconstruction and localization of the primitives. Our
approach has been validated in simulations and turned
out to be a powerful and effective one. The final results
confirmed the point of view of previous works about
the promising future of active vision [3] [1] [2] [12].
Finally, let us report that actual work is devoted to
the implementation of the algorithms described in this
paper in an experimental cell in order to obtain results
from real images.
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