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Abs t r ac t :  The aim of this paper is to examine some problems related to robot control in 
an output sensory space, with focus on the particular case of visual sensors. A single sensor is 
here considered as a mapping from SE3 to ~ .  This assumption allows us to set that the related 
jacobian is a particular set of screws, which authorizes some unification in the analysis. Then, 
we define the concept of virtual linkage as a way of expressing the constraints induced by the 
sensors. We then use the redundancy approach of C. Samson in order to design a correct task 
function, specifying in that way the right output working space. Some facts in the control are 
then recalled. 

All the analysis, originally suited for proximity, range or force sensors, is applied to the 
case of visual sensors. The various involved mappings and the needed assumptions are precised; 
the design of adequate task functions which use special image features is presented, with some 
indications on the practical derivation of the jarobian models. Some results and comments are 
finally given. 

1 I n t r o d u c t i o n  

1.1 Notation 

The following notation will be employed: 

Let E be the three-dimensional affine euclidean space, the related vector space being 

~3. The configuration space of a rigid body, which is also the frame configuration space, is 

the Lie group of displacements, SEa (Special Euclidean Group), isomorphic to 1~ 3 x S03 

where S03 is the group of rotations. It  is a six-dimensional differential manifold. An 

element of SE3, called a 'posit ion'  (i.e. location and at t i tude owing to the previous 

isomorphism) is denoted as e. The tangent space to SE3 at identity is denoted as sea, 

and its dual, or cotangent space, se~. sea is a Lie algebra isomorphic to the Lie algebra 

of equiprojective fields of E in ~3, which means that  any element (field) of sea is no more 
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than the classical velocity screw. A screw H is also defined by its vector u and the value 

of its field in a point P of E. We may therefore write: H = (H(P), u). 

Frornes ore denoted as F ,  with origin O. A given screw expressed in F is then also a 

vector in lq s. Finally, the velocity of a frame F~ with respect to a frame Fj is denoted as 

[ 0 In ]  I t m a y b e  The screw product is the bilinear mapping associated with /3 0 " 

written, for any considered point P:  

~I .H2 =< u1,~2(e) > ÷ < u2,~(e) > (I) 

where <, > is the usual scalar product between two vectors of ~3. Let S be a screw space. 

The screw product induces an isomorphism between 3: and its dual S*, which is itself a 

screw space. 

We will denote the skew-symmetric matrix associated with a vector of ~s as As(.); a 

matrix A (n x n) will be said positive if zrAx > 0, Vz ~ 0 e l~ n. 

We will also consider a rigid robot, the state equation of which is given by 

r = M(q) # + N (q, ~/, t) , dim(q) = d i m ( r )  = n (2) 

where r is the vector of applied external forces (actuator torques), M is the kinetics 

energy matrix, N gathers gravity, centrifugal, Coriolis and friction forces, and (q, ~), the 

joint position and velocity, is the state vector of the system. 

It is assumed that an actuator is associated to every degree of freedom of the robot. 

We will also assume here for simplicity that n = 6. Let F6 be a frame linked to the 

'last' body, and F0 a reference frame. The robot jacobian, J ,  is the jacobian associated 

to the mapping from q E R s to the position of Fs with respect to Fo. We do not consider 

here the case where J(q) falls singular. Some techniques to cope with this problem are 

presented in [11]. 

1.2 A F l a v o u r  o f  t h e  P r o b l e m  

Decoupling and linearizing (2) in the joint space is trivial as soon as the dynamics is 

known and computed. However, control in joint space is generally of little interest for 

the user: it is at least wished to control the position of Fs. The ideal decoupling and 

linearizing control takes then the form: 

r = M(q) d-l(q) u + N(q,~) - M(q) J-~(q) ~rW~(q,t)~ (3) 
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where Wi(q,t)(i = 1, . . .  ,n) is the partial derivative of the i-th row of j r (q)  with respect 

to q, and u the new control vector. The need for nonsingularity of J(q) appears here. 

Nevertheless, this kind of control, in SEa, is not suitable in more complex (and interesting) 

applications, especially when exteroceptive sensors are used. Another working space is 

then required. This situation is a particular case of the more general 'control in task 

space', developed in [8] and [11], which will be briefly stated in section 4. 

We will therefore try in the present paper to show how a control in sensory space, ex- 

tending in some way the scheme (3), may be designed, and we will apply this approach to 

the case of visual sensors (other cases are examined in [11] and [4]). It should be empha- 

sized that,  in robotics, this area, known as 'visual servoing', is not as largely investigated 

as classical robot vision. Some relevant references are [2], [5], [6], [7], [13], [14], [12]. The 

related works will not be discussed here, since done in [3], to which we refer the reader. 

In fact, modelling aspects and design of the adequate task function (i.e. of the output 

space associated to (2)) are the most delicate points, and we shall focus the development 

on these aspects. Section 2 will be therefore devoted to general considerations on sensor- 

environment interactions; the concept of hybrid task (i.e combining tasks expressed in SE3 

and in a sensory space) is presented in section 3, while section 4 examines the specific 

case of visual features. Finally experimental results are presented in section 51 followed 

by few remarks on the need for on-line estimation schemes. 

2 Mode l l ing  of  Sensor -env ironment  Interact ion  

2 . 1  T h e  I n t e r a c t i o n  S c r e w  

We restrict our study to the case where, formally: 

• A sensor is completely defined by a C 2 mapping from SE3 to ~k. 

This assumption implies in particular that, for a given sensor, relative environmental 

modifications of the geometrical kind are the only ones allowed to make the sensor output 

varying. This is true for many kinds of proximity, range force and visual sensors. Let 

us now link a frame F r  to the part of environment observed by the sensor, and another, 

Fs, to the sensor itself. The reference frame may be Fs or FT, or, even, when the 

environment is time-invariant, any associated frame Fo. The sensor output s may then be 

written: s (Fs, FT). Furthermore, let us assume that the sensor mobility is got through a 

generalized coordinate system, q, which constitutes a local chart of SEz. Then, when the 

observed objects are autonomously mobile themselves, s may be also written s = 8(q,t}~ 

the independent time variable t representing this contribution of the objects motion. The 
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six variables ql are for example the joint angular positions of a rigid manipulator which 

handles a camera. 

Let us now examine a one-dimensionM component sj of s. Owing to the above pre- 

liminaries and to the definition of 8, we know that its differential at ~, dsjl,, is a linear 

mapping from se31, to l~. It is also known that the differential of any analytic function 

from a manifold M to l~ may be identified with an element of the cotangent space. In 

our case, this implies that the differential of 8j at ~ is simply 'an element of se~, that is 

to say a screw. Recalling that an element of se3 is the velocity screw V, we may finally 

write at F in SE3 the basic screw product: 

hj = Hj ° VST (4) 

where VST is the velocity of the frame FT with respect to the frame Fs, • is the screw 

product defined above, and H 1 is a screw, the expression of which depends both on the 

environment characteristics and on the sensor itself. It therefore fully characterizes the 

interaction between a sensor and its environment, and we thus call it Interaction Screw. 

2.2 T h e  C o n c e p t  o f  V i r t u a l  L i n k a g e  

A set of compatible and independent constraints, s(f)  - a* = O, where s* is stationary, 

constitutes a v i r t u a l  l inkage between the sensor (S) and the objects of the environment 

(T). Let thus V* be a virtual motion at ~ keeping constant the sensor output component 

si, i.e. preserving the satisfaction of the j t h  constraint. V* is solution of the equation: 

H~ • V" = 0 (5) 

and is therefore a screw reciprocal to Hi. Let us now return to the full sensor output  

vector, 8, with dimension k. The set of the motions V* leaving s invariant is S °, the 

subspace reciprocal to the screw subspace S spanned by the set {H1 "-- Hr- -"  Hk} in se3. 

In a position where these constraints are satisfied, the dimension, N, of S" may be 

called the class of the virtual linkage in ~. 

• R e m a r k :  With an obvious breach of notation, equation (4) may also be written: 

hj = L~" Vsr where L~" = Hi /3 0 

L f is the matrix-form of the interaction screw Hi, in a given frame F and in a 

chosen point O. In the same way, the matrix form of the set {Ha . . .  Hk} is called 

Interaction Matriz, and is denoted as L T. With a similar breach of notation, we 

may write S* = Ker L T. 
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The interest of this approach lies both in its generality and in the unification it realizes. 

Let us simply emphasize two aspects of these advantages: 

• Computa t ion :  Knowing that the robot direct kinematics is a mapping from ~" 

to SE3, it is easy to see that every column of the robot jacobian matrix, J,  is the 

matrix representation of a screw. In most of the computations needed in practice, 

the three useful transformations are therefore simply: 

- the change of basis (i to j ) ,  with matrix R~j (rotation matrix); 

- the  change of frame (Fi to Fj), with homogeneous matrix/~7 = [ R/j0 [OiOi]t~'l ] 

the change of reference frame for screws, with matrix Ad~j = [ Rij l~jAs(OiOj)ei ] 
/ o R~j J 

which is required for transforming the robot jacobian expression. 

Since the assumption made in sensor modelling leads also to consider sets of screws, 

it appears that the three transformations above are also the only ones to be used. 

This finally allows to obtain some unity in the computational issues. 

• Vir tual  linkage: This concept may be related to the basic kinematics of contacts, 

as classically used in the theory of mechanisms. The idea of virtual linkage, which 

may include the physical linkage when contact sensors are used, will allow us to 

design the wished sensor-referenced robotics tasks in a simple way. This will als0 

establish a connection with the approach known in the litterature as 'hybrid control', 

which is traditionnaly used in control schemes involving contact force sensors. This 

finally shows that many types of sensors may be used within a single framework: 

the one of hybrid tasks which realize virtual linkages. 

3 T a s k s  a n d  C o n t r o l  D e s i g n  

3 .1  T h e  c o n c e p t  o f  t a s k  f u n c t i o n  

The dynamic behaviour of a rigid manipulator is described by equation (2). The task 

to be performed may then be specified as an output function associated to (2). More 

precisely, it may be shown ([li D that the user's objective may in general be expressed 

as the regulation to zero of some n-dimensional C 2 function, e(q, t), called task function, 
during a time interval [13, T]. An immediate example of task function is 

e(q, t) = x(q) -- xd(t) (7} 
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where Zd(t) is for example a pararnetrization of the desired position of a robot wrist in 

SEa. Many other cases are presented in [11]. When sensors are used, it appears that 

the sensor vector s(q, t) has to contribute to the design of the task function, in a way 

explained later. 

As detailed in [8] and [11], the problem of regulating e is well-posed if e has some spe- 

cific properties. One of them is the existence and the unicity of a C 2 ideal trajectory~ q~(t)~ 

such that e (q~(t), t) = 0, t E [0, 7'] and q,(O) = qo, where q0 is a given initial condition. 
Oer t~ Another one, very important, is the non-singularity of the task-jacobia~ matrix ~ tq ,  ), 

around qr(t). When all the required conditions are satisfied, which will be implicitly as- 

sumed in the following, the task function is said to be 'admissible'. Efficient control laws 

may then be designed. 

3.2 Control  and s tabi l i ty  

We only give here an intuitive idea of the used approach and of the obtained results. 

All the related developments may be found in [8] and [11]. Let us consider the exact 

decoupling and feedback linearization in the task space: in a way similar to (3), it is easy 

to see that an adequate control is: 

M ( ° q - ' .  ' 
r =  \ ~ j  + N -  \#qj / (8) 

with: 

f(q,  c), t) = 
02e 025 t" 

+ 2~qot(q,t) ~ +-~(q ,  ) (o) 

W~(q,t)(i = 1 , - . . , n ) i s  the partial derivative of the i-th row of "--'(~)a'(q,t) where w i t h  

respect to q. We may choose a PD feedback of the form: 

. '  = -,~G ( . D e  + 4) (10) 

G and j9 being positive matrices, A and p being positive scalars, all to be tuned by the 

u s e r .  

The ideal control scheme (8) (10) requires a perfect knowledge of all its components, 

which is neither possible, nor even wished. A more realistic approach consists in general- 

izing the previous control as: 

A - 1  ~ - 1  
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where the carets point out that models (approximations, estimates) are used instead of 

the true terms. In this general expression, all the terms but/=, D and G are allowed to be 

functions of q and ~, even of ~ for ,~, .f and N. 

A stability analysis of the system (2) with control (11) was done by Samson ([11]) in 

a nonlinear framework. Two main classes of sufficient stability conditions (in the sense of 

the boundedness of Ile(t)ll) were then exhibited: gain conditions (these tuning parameters 

leave more or less possibilities to the user) and mode l l ing  conditions. Among them, the 

most critical concerns the task itself, and has the form: 

\Yq) >o (12) 

This essential condition allows to characterize the robustness of the task itself with regard 

to uncertainties and approximations. 

It may already be noticed that, when we are interested in the motion of the end 

effector, we may write o~ = ~ ~ ,  where ~ is the robot jacobian matrix, J .  When it 

~ J  allows is known and nonsingular, as we shall assume afterwards, the choice ~ = o~ 

condition (12) to be reduced to: 

~--~) > 0 (13) 

3 . 3  H y b r i d  T a s k s  

Regulating sensor signals is generally not the unique user's objective; very often, this task 

has to be combined with another such that a trajectory tracking. 

Generally, the problem specification leads in a first step to defining a sensor-based task 

vector, el(q, t), with m < n independent components, the regulation of which constitutes 

the part of the global task which requires the use of exteroceptive sensors. How to derive 

such a vector when using visual sensors will be described later. A second objective, for 

example a desired sensor motion, might me represented in a first'glance by a second vector 

e2(q, t). However, el and e2 would be gathered in a single task vector e(q, t) admissible, 

such that  the two tasks are compatible and independent. 

It may indeed be shown that a more efficient way of setting the problcm consists in 

embedding it in the framework of task redundancy. In this approach, el is considered as 

prioritary, and e2 is defined as the representation of the constrained minimization of a 

sccondary cost function. 



159 

3.3.1 T h e  R e d u n d a n c y  F r a m e w o r k  

Let us assume that J = ~ is known and nonsingular everywhere needed. Let et be a m- 

dimensional main task, with jncobian matrix J~ (= - ~ )  in SE3, and let ho, with gradient 

9~ = ~.~t, be a secondary cost function to be minimized (the choice of h, is discussed 

in [11]). Minimizing h, under the constraint cl = 0 requires the subspace of motions left 

free by this constraint to be determined. This comes back to knowing the null space of 

J~, Ker di" (or the range of J~", R(J~T)) along the ideal trajectory. In other words, it has 

to be found any m x n full rank matrix W, such that: 

RCW ) = R (14) 

along the robot's ideal trajectory, q,(t). 

Once this matrix is determined, it may rather easily be shown ([9], [11]) that a task 

function minimizing h, under the constraint el = 0 is: 

= W +ca + ,~ (I. - W+W) g T  (15) 

where a is a positive scalar, W + is the pseudo-inverse of W, and (I,, - W+W) is an 

0rthogonal projection operator on the null space of W, i.e. on that of J~. 

• R e m a r k :  When ex is made from sensor signals and ho expresses a trajectory track- 

ing task in SE3, the task represented by (15) is then called 'hybrid task'. 

It clearly appears that the computation of the jacobian matrix related to (15), possibly 

required in the control scheme, may be complex. The positivity condition (13) may then 

be of some interest. It may indeed be shown that if, in addition to (14), W satisfies the 

property: 

J~W T > 0 (16) 

along q,(t), then, under 'normal circumstances' (see [11]) the jacobian matrix of e in SE3 
is such that 

o-7 ( i .  + (I. - W+W))  > 0 (Iv) 

along qr(t), and V7 > %~(a) > 0. The condition (13) is therefore satisfied by taking: 

oe) 

More, when a is 'small enough', then 7.1 = 0, or is positive, and we may choose: 

0e 
0-7 = I .  (19) 
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3.3.2 T h e  Specif ic  Case  of  Senso r  Signals  

Let us know apply this approach to the use of sensor signals a8 defined in section 2.1. 

Let us recall that the vector s is of dimension k. Recall that the jacobian of ~ in S ~  

corresponds to the interaction matrix L r .  The dimension of L is 6 × k and its rank is m, 

N = 6 - m being the class of the associated virtual linkage. 

We are interested in regulating s around a desired value or trajectory s*(t). Let C(t) 

be a 'combination matrix' ,  with dimension m × k, such that the matrix C L  T is of full 

rank m along qr(t). The main task may then be written ([lOD: 

~, = c ( ~ )  (~(~,~) - ~ ' ( t ) )  (20) 

One of the advantages of the existence of C is the possibility of taking into account 

more sensors (k) than the actual dimension of the constraints they specify (m). 

The jacobian matrix of el in SEn is then d~' = - ~  = CL r and we may easily show 

that R(J~ r)  = R(L) .  Owing to (15), the task to be regulated may finally be written: 

= w + c  ( ~ ( ~ , t ) -  rCt ) )  + ~ (I~ - w+w) g~ (21) 

W must ideally satisfy property (14), which then becomes R ( W  T) = R (L )  ; this als0 

means that the rows of W are made from basis vectors of S. Finally, property (16) 

becomes 

C L T W  T > 0 (22) 

which prevents C and W from being chosen independently. For example, (22) may be 

satisfied by selecting: C = W L  or C = W L  r" where L r '  is the generalized inverse of L T 

In many cases, C and W may be chosen constant, as assumed in the following. 

3.3.3 M o d e l  of  o~ 

In the control equation (11), art expression of the term ~ is needed. Considering again 

the task function given by (21), we then have: 

0-7 = w +  + ~ C~ - w + w ) ~ f  (23) 

Vector ~ represents, when C is constant, the contribution of a possible autonomous ot 

target motion and is in general unknown. The choice made in many cases is ~ = 0. 

If the target moves, this choice may lead to a tracking error, the size of which decreases 

with 2. On the other hand, if, as in trajectory tracking, the used secondary cost function 

allows to know g,~, we may choose: 

Oe 
0.7 = ~ (~' - w + w ) ~ f  (24) 
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4 C a s e  o f  a V i s u a l  S e n s o r  

4.1  F r a m e w o r k  

Let us reduce a camera to a perspective projection model (Figure 1). All the used vari- 

ables, for example the camera velocity screw (v(O), w), denoted in the following as V~, the 

point coordinates, the interaction screws, will be assumed to be expressed in the frame 

(O, g, !7, z-") linked to the camera. 

O~~~rn 
Figure 1: A simple camera model 

Without loss of generality, the focal length is assumed to be equal to 1, such that any 

point m of E with coordinates x = (x y z) r is projected on the image plane as a point M 

with coordinates X = (X Y 1) r with: 

1 
X = - Z (25) z 

* R e m a r k :  It would seem to be necessary to complete this geometrical model with 

a photometric model. Some arguments given in [3] justify the absence of such a 

model in the present development. 

Let us consider a single rigid solid in E,  to which tridimensional primitives (points, 

lines, vertices...) may be associated. A set of such primitives is called a 'scene feature'. 

A configuration of the scene feature is an element p of the set P ,  of all possible configu- 

rations. When a scene feature fully characterizes the position (location and attitude) of 

the associated rigid body~ the dimension n' of 7:', is 6. Otherwise, it is smaller. 

Let us denote as f the perspective projection mapping, with f(p) = P E Pl ; dim "Pi = 

rn < n'. P is called an 'image feature'. It is assumed that p belongs to an open subset 

U C 7:', such that P = f(p) is not a degenerated element of T'i (case where, for example, 

a line projects onto the image plane as a point, a circle as a segment,...). This restriction 

implies that it exists a complete parametrization P of P on the open set V = f(U) C 
Pi. Moreover, we assume that this parametrization is differentiable and minimal (the 

dimension of__P is m). 

Let p a complete and unique parametrization of p in U (in the sense that a single 

parametrization is necessary and sufficient to represent any configuration of the scene 
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feature p in U. The dimension of p_ is n >_ n'. If we write E = ¢(P) and _.P = ¢(P),  we 

have (see Figure 2): 

P = ¢ o f o ¢-1(p) (26) 

W C. S E 3  
(~) (p) f (P) 

(_p) ¢ofo¢-1 (p) 

Figure 2: From f to s 

--"4 R 
(~) 

p = ¢ o s (~)  (27) 

whence: 

P = ¢ o / o ~(~) (28) 

The components sj of the 'signal sensor' will then be chosen as a function sj = a(P)  such 

that a is differentiable, the most frequent situation being to choose for 8j a component of 

£. 
The derivation of the interaction matrix reduces therefore to the computation of the 

a ,  OPp_ a P  ~ .  as ~,~P ~aP expression b--P_ oP av a~ , and, often practically to the computation of y-~p-~E of. This form 

is not always the most adequate for an analytic computation of L T, and another method 

may sometimes be preferred which allows to directly obtain 0v -bT' 
Indeed, the i *h primitive of a sccne feature may generally be described by an equation 

of type: 

h~(~_,p~) = 0 (29) 

where hi defines the kind of the primitive and the value of -Pi corresponds to one of its 

configurations. 

In practice, the interaction matrix associated to the parametrization Pi of each prim- 

itive is computed, and the global interaction matrix associated to P is obtain by con- 

catenation of all the elementary interaction matrices. In the sequel, hi, pi, Pi, Pi and P~ 

related to the ita primitive will be respectively denoted h, p, _p, P and P. By using (25), 

Finally the group of displacements acts on 79, through the mapping ~ and we assume 

that the displacements are restricted to an open set W of SEa such that ~;(W) C U in 

order to prohibit any degenerated case. We then have: 
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equation (29) becomes: 

i.e. 

h(zX,e . )  = o (30) 

h'(X, z,_p) = 0 (31) 

Under the condition oh' # 0 which is ensured in all the non-degenerated cases, the 

implicit function theorem ensures the existence of a unique function p around a solution 

x_ 0 of (31), such that: 

z = p(X,p) (32) 

Let us give two simple examples of basic primitives. For each of them, we give the 

function p and the projection in the image of h(_x,p) = 0, which will be written under the 

form: 

g ( X , P )  = 0 (33) 

• Case o f  a point: Let mi be a point of E with coordinates ~ = (xl yi zi) T. We have: 

h l = X _ x i =  0 
h(x_,p_) = h~ = y - yi = 0 

h3 = z - zi = 0 

(34) 

{ X - A q = 0  
In this simple case, p is obtained from h3: z = z~ and g by g(X__, P)  = Y - Yi = 0 

where Xi and Yi are the coordinates of the projection of m i  in the image. 

• Cases  o f  a straight line and o f  plane primit ives:  h is then two-dimensional (h = 

(hi h2)r). We may for example choose the equation of the plane in which the 

primitive lies as a function h2 (in the line case, h2 is not unique). /~ is then obtained 

from h~(X,z ,p_)  = 0. With (32), h'~(X,z ,p . )  = 0 gives h(X,p  ) = 0, with dim h = 1, 

which, after change of parametrization, may be written g (X ,P )  = 0. 

The case of tri-dimensioual primitives is treated in [3], [1]. 

Knowing that the rigidity assumption implies g = 0 ,  VX E P, we may now compute 

the interaction matrix L T associated to P .  Differentiation of (33) gives: 

og • Og 
~_p(X,__P) _P = - ox__(__x,_P) 2 ,  v x  e P (35) 

Differentiating (25) leads to the wellknown optic flow equations, which may be written: 

x_ = L[1(g,z) v, (36) 
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Using (32) in (37), gives: 
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where V~ is the velocity of the camera with respect to the scene, and with: 

0 X / z  X Y  - ( I + X  2) Y '~ 
- 1 / z  Y / z  l + Y2 - X Y  - X  / (37) 

z, j(x,z) = (38) 
Finally, (35), (36) and (38) lead to: 

Og Og 
( X , P )  1" = -ox(X,P__)  L~(X___,p) T VX  e P (39) 0_.P'-- --  ' - -  

This equation may be solved, either by explicitly using (33) in (39) and identifying, or by 

choosing m points )(i of Q and solving (see [1]). 

4 . 2  T w o  e x a m p l e s  o f  u s u a l  f e a t u r e s  

4.2.1 Po in t s  

Consider a point ml of E with coordinates x~ ; then, p_ = (xi y~ z0 and P = (X~ 1~). The 

matrix forms Lx~ and Ly, of the two interaction screws Hx, and H~ , expressed in F and 

in O, are given by (37) and may be written: 

LATq=[--1/Zi 0 Xi / z  i XiYi - ( I - I - X ? )  Y/ ] (40) Ly,r = [ 0 I + Y? -X,Y,  ] 

Various sensor signals may be generated from image points, as described in [3]. 

4.2.2 S t r a igh t  l ines 

A straight line in E may be represented as the cross-section of two planes: 

a x x + b l y + c l z + d l = O  
h(_z,_p)= a2x + b2y + c2z + d2 0 (41) 

If we exclude the degenerated case where the projection centre belongs to the straight 

line (dl = dz = 0), the equation of the projected line in the image plaae is: 

A = a ld2-a~dt  
A X  + B Y  + C = 0 with B = bld2 - b~dx (42) 

C = cld2 - c2dt 

Since the parametrization (A, B, C) of 2D straight lines is not minimal, another one 

should be preferred. The most used, P = (a, b), is unadequate because two charts non 

compatible (Y = aX + b, X = aY  + b) have to be used. We therefore choose __P = (p, 0) 

and the equation of a straight line 2) is then: 

g(X, P)  = XcosO + YsinO - p = 0 (43) 
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• R e m a r k :  The ambiguity on the representation (p, 8) may be easily overcome. 

It may then be shown that the related interaction screws are: 

L~" = [ AocosO A0sinO -,~oP -pcosO --psinO - 1  ] 
Z ~ = [  ),vcos0 A, sin0 -A,p (l+p2)sin0 -(l+p2)cos0 0 ] 

with = (a b, - a,b )/vr  + 

and = - c: )cos0 + (c b, - 

Other more complex cases (circles, spheres...) are examined in [1]. 

(44) 

4.3  V i s i o n - b a s e d  T a s k  D e s i g n  

4.3.1 On the  M o d e l  of  t he  In t e r ac t i on  M a t r i x  

It has been seen that, when data provided by a mobile camera are used as sensor signals, 

the associated interaction matrices L T take the form LT(p_,P) where P = P(~, t) may be 

measured in the image, and where _p = p(~, t) represents the 3D information coming from 

the considered primitives. Since this last information is a-priori unknown, it is necessary 

to choose a model L of L. The task vector (21) has therefore to be derived by choosing 

C = WL or C = WL T~. Properties (14) and (16) will thus be satisfied if we may ensure 

that, respectively, R (L) = R(L) and CLTW T > 0. Recall that the interest of satisfying 

these properties lies in the possibility of simply choosing the identity matrix as a model 
of Oe ~ .  Several possibilities exist: 

• L = L(~,P)  when _p. may be concurrently estimated. 

• L, = L(p_*,P) where p_* is the value of p at s = s* which realizes et = 0. Some further 

assumptions are then needed. We will come back to this point later. 

• L = L(~*,__P) where ~* is an estimate of p__* when no 3D information is available. 

The above choices need the matrix C to be updated at the same rate as the control 

loop. This may be difficult, for example when C is chosen equal to WL T~, because of the 

computing time required by the computation of generalized inverses. It is also sometimes 

necessary to anticipate the possible crossing of an isolated singularity. A simpler solution 

consists in using a constant model L, determined within the task design step. It may 

then be chosen ], = L(p_.*,_P°), also denoted as LI,=o., which is the value of the interaction 

matrix at the position corresponding to the selected feature, s = s °. 

The positivity condition (22) is then often only satisfied in the neighbourhood of the 

desired position s = s °, whatever the choice of C. Fortunately, it should be emphasized 
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that this condition is only sufficient, and, in practical experiments, the convergence of 

the control law was always obtained even from initial conditions far away from the goal 

position. This choice of L requires the knowledge of p*~ which is equivalent to making 

assumptions about the geometry of the 3D scene. Such assumptions may often be done 

when the task is being defined, and seem then not too strong: for example, if the task 

consists in positioning the camera in front of a door, it may be assumed that there is a 

door in the scene, and that characteristic signals of this door (for example its 4 corners) 

may be extracted. In addition, if it is desired to place the camera at a given range of the 

door, its dimensions should be known in order to determine the goal feature in the image. 

However, in some cases, the form assumption is the only condition required for the 

image feature determination (in the previous case this means that the obtained range 

would be indifferent to the user). Then, if LT(p*,_P*), where the value of p_p_* is unknown, 

may be written as LT(p*,P *) = B r ( P  *) D(___*,P*) where D is a n x n positive matrix, 

and where B and L are of same rank, we may choose L = B(P*) when the positivity 

condition is satisfied around ~*, for example when D is diagonal or when B is of full rank. 

Finally, when the previous conditions are not fulfilled, or if no scene knowledge is 

available (for example when it is wished to track an unknown object with a goal image 

feature extracted from an initial image of the object), it may be chosen L = L(~*,P') 

where/3" is an estimate of p' ,  not necessarily very accurate, but ensuring the asymptotic 

stability of the controlled system in some neighbourhood of s = s °. Ensuring the positivity 

condition to be satisfied is then difficult, even when s = s*, since the value LI,=,, remains 

unknown. 

In the experiments we have conducted, form and dimensional assumptions were done. 

Therefore, L = LI,=,.. Furthermore, the matrix C was always chosen equal to WL rg, 

where W is such that R (W T) = R(L), because of better obtained decoupling properties 

than with the choice C = WL. 

5 Resu l t s  and Concluding Remarks  

SeverM examples, obtained in simulation or with an experimental testbed, are reported 

in [3] and [1]. We only give here a simple illustration of the proposed approach. 

Let us consider a task aimed to position a camera with respect to a 'road', which is 

symbolized by three parallel straight lines in a plane (lateral and central white bands). 

The goal position is such that the camera lies at a height V* at the middle of the right 

lane and that the camera axis F coincides with its direction and its axis ff is vertical. 

By using equations (41) and (43), fonctions h(x,_p.p) and g(X,__P) associated to the three 
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lines are immediatly obtained: 

[ ~' + z/* = 0 
hl(_.z,p') l z + 1 /4  -- 0 

f u + u" = o hz(:r,p*) : l z - -  1 / 4  = 0 

f. u + u* = o 
h 3 ( ~ , ~ * )  I l z - 31/4 = 0 

{ o; = a ~ c t = ( - q 4 u ' )  (45) 
=~ p~=o 

O ; = a r e t a n ( t / 4 y ' )  (46) 
p~=O 

{o; = a r c t ~ ( 3 q 4 u ' )  (47) 
=~ p~=O 

- c o s ~ 0 i / y  * 

0 

LI~= o. = - c o s 2 0 ~ / Y  * 
0 

- c o s  2 0 ; / y *  

0 

The sensor signals to be selected for describing 

represent the three lines: s = (Ol,px,O2,p2,03,p3).  

Furthermore, the interaction matrix associated with 

- cos 0~ sin O~[y* 
0 

- cos 0~ sin 0~/y" 
0 

- cos 0~ sin O~/y ° 
0 

this task are the parameters which 

Therefore: s* = (0[, 0, 0~, 0, 0], 0). 

s" may be easily derived from ( 4 4 ) :  

0 0 0 - 1  '~ 
0 sinO~ -cosO~ 0 

J 0 o o - i  (48) 
0 sinO~ -cosO~ 0 
0 0 0 - - I  
0 sinO; - cos0~  0 

LIT=.. is always of rank 5, and Ker L~=.. = ( 0 0 1 0 0 0 )  T. 

Let us now apply the previous approach to the derivation of e. The following 5 x 6 

matrix may be chosen as a matrix W: 

1 0 0 0 0 0 
0 1 0 0 0 0 

W =  0 0 0 1 0 0  
0 0 0 0 1 0 
0 0 0 0 0 1 

Tg The combination matrix C is chosen equal to WLI.=°. 

task vector e is obtained: 

(49) 

and, by using (21), the following 

e = W+WL~.L.(s(~,O- ~') + ~ ( ~ -  w + w )  g;T (50) 

The secondary task may consist in specifying a time trajectory along F, for example a 

constant velocity v. The associated secondary cost to be minimized is h, = ½(z(t) - zo - 

vt) 2 w i t h z ( O )  = z o .  The re fo reg~=(O 0 ( z ( t ) - Z o - V t )  0 0 0). Note that tasks el 

and e2 = z ( t )  - Zo - vt  are then compatible and independent since: 

e~== 

10000o / + / ° )  
0 1 0 0 0 0  0 
0 0 0 0 0 0 T, z ( t ) - - ~ - - v t  (51) 
0 0 0 1 0 0 L,.=.. 0 
0 0 0 0 1 0  o 
0 0 0 0 0 1  0 
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Figure 3 gives an example of the obtained beh~viour. Left and right top windows 

show respectively initial and final positions of the camera (symbolized by a pyramide) 

with respect to the target. Middle windows represent the associated images. On bottom 

windows, the time variation of 118(e, t) - s*ll and of the components of Tc are respectively 

plotted. Finally, Figure 4 presents a sequence of real images and the obtained plots 

corresponding to the positioning of a camera handled by a six jointed robot with respect 

to a 4-point target. 
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Figurc 3: Road following 
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Figure 4: Positioning task 

One possible development of this work lies in the use of an adaptive approach of the 

control scheme. Indeed, we may consider that intrinsic system parameters (inertia, kine- 

matics, camera parameters...) which are not liable to large variations, may be computed 

or estimated off-line. On the contrary, uncertainties on the environment, which have a 

strong influence on the control behaviour, have to be considered carefully. In the present 

case, an example of uncertainty is the own object velocity, which contributes to the term 

Setting it equal to zero, as done here, may lead to tracking errors all the more large Or" 

that the gains are small. Since the system is very sensitive to this parameter, an on-line 

estimation of the task vector velocity or of the object velocity within an indirect adaptive 

control approach would be useful. 
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Indeed, let us consider the vision-based-task function (with a constant combination 

matrix): 

e(q, t )=C(s(q, t ) - -s*)  (52) 

Let T the object velocity, we then have: 

= CLT(q, t) (J(q) ~1 -- 7") 

and 

with 

= CLT(q, t) J(q) ~l + f(q, q, T, ~', t) (54) 

: 

f (q,( l ,T,T, t )  = CLr(q,t) ( ~T ~ ~ _ ~') + C (J(q)~-  T) r ~ "  (J(q)~-  T) 
: 

where Ji and Li(i = 1, . . . ,  n) are the i-th row of J(q) and L(q, t). 

We can use the controI scheme (I1) with a model L of the interaction matrix (scc 

section 4.3.1) and with: 

Oe CLrd(q ) Oe _CLr  ~. (55) 
Oq ' Ot 

-T)+c 
A 

(J(q)cl - ~')T ~ (J(q)(t - fir) (56) 

and 

] = CLT ( 

where T and 7" which appears in ] may be obtain by estimation algorithms. A simple 

case, where T is assumed constant, is treated in [1]. 
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