

# Ultra-Wideband Beacons for Ranging and Navigation

Vincent Drevelle Univ Rennes, Irisa, INRIA, CNRS RAINBOW

2RM Tech Days-22 mai 2024 - Rennes



# Ultra-wideband radio modules (UWB)

Low cost, low power nodes Precision timing and ranging (around 15 ps resolution ~ 5 mm)

### Communication

### Ranging

- > Digital keys
- > Covid distance wearables

### Real time locating systems

- > Hospitals
- >Industry, warehouse
- > Mini drones

### **Tracking devices**

> Apple Airtags, Samsung SmartTags+...



### UWB Devices: ecosystem

#### Chip manufacturers

- Qorvo (formerly Decawave): DW1000, DW3000 series
- NXP: Trimension series
- Qualcomm: FastConnect 7900
- Microchip
- Apple: U1, U2 chips
- Samsung

### Fira consortium

### **Positioning systems: RTLS**

IRISA 💥 Université Única

- Pozyx
- Ubisense
- Intranav
- Zebra

•...

(CNrs)







Posyx (anchor)

# Technical details

#### **Radio characteristics**

- 500 MHz bandwidth pulses
- Centre frequency: 16 channels
  - > 500 MHz (subGHz), 3.1-4.8 GHz (low); 6.0-10.6GHz (high band)
  - > Qorvo modules: 6.5 GHZ (ch.5), 8 GHz (ch. 9)

#### • IEEE 802.15.4 standards



Figure 15-13a—Recommended time domain mask for the HRP UWB PHY pulse

from IEEE 802.15.4z

#### Frames / Packets

| SYNC<br>(preamble) | SFD<br>start frame<br>dolimitor | PHY<br>Header | PHY Payload |
|--------------------|---------------------------------|---------------|-------------|
|                    | ueunnitei                       |               |             |

Preamble enables frame detection (by correlation)



## Positioning: Realtime locating system

• Anchors: fixed nodes, known position

• Tags: mobile nodes to be located





### Time of arrival measurement

The receiver performs channel impulse response (CIR) estimation by correlation



# Positioning: Time Difference of Arrival (TDoA)

(CNrs)

The anchors are time-synchronized. They measure the time of arrival of a message from the tag. Differences between reception times provide hyperbolic constraints on tag position



# Measuring distances: two-way ranging (TWR)

#### Range measurement between two nodes

Exchange of messages to compute the time-of-flight (ToF).



More advanced schemes can be employed to compensate clock rate differences between nodes: carrier frequency offset estimation, 3 or 4 messages protocols.



# Measuring distances: two-way ranging (TWR)

#### Range measurement between two nodes

Effect of clock frequency offsets



# Measuring distances: double-sided two-way ranging (DS-TWR)

#### Range measurement between two nodes

6 IRISA 💥 Université Únría

cnrs

Exchange of 3 messages to compute the time-of-flight (ToF) and correct for the clock frequency offset.



Residual clock frequency offset related error is  $\epsilon_B ToF$ . Useful protocol for long response times. The receiver clock frequency offset  $\epsilon_B$  is in the order of 10 to 100 ppm.

# Positioning: Two-way ranging

A1

The tag successively measure ranges with all neighboring anchors Ranges provide spherical constraints on tag position

Better positioning precision than TDoA for a given number of anchors

 $r_1$ 



CNrs



A2

 $r_2$ 

Tag

**A**3

 $r_3$ 

# UWB positioning comparison

|                               | TDoA<br>(anchors receive) | TDoA<br>(anchors emit) | TWR                             |
|-------------------------------|---------------------------|------------------------|---------------------------------|
| Needs anchors synchronization | yes                       | yes                    |                                 |
| Ranging                       |                           |                        | yes                             |
| Position precision            | lower                     | lower                  | better                          |
| Number of<br>mobile nodes     | Thousands                 | Unlimited              | Tens to hundreds                |
| Tag power<br>consumption      | lower                     | medium                 | higher                          |
| Position<br>computed by       | Infrastructure            | Mobile node            | Mobile node /<br>Infrastructure |



### Measuring directions: Angle of arrival (AoA)

Use two/three antennas on a single receiver (or on synchronous receivers)

Long baseline between antennas :

> Time difference of arrival (TDoA)

Short baseline (< half wavelength) : > Phase difference of arrival (PDoA)

$$\theta = \arccos(\frac{\phi\lambda}{2\pi d})$$

IRISA 💥 Université Únia

#### Ambiguity:

(CNrs)

Two-antenna receiver : semi-cone in under far field assumption / 2 directions in 2D 3-antenna receiver : -> front/back ambiguity

# UWB positioning and ranging: Sources of error

cnrs





CNIS 6 EIRISA CINVErsité Corta INSA

### UWB: Power wheelchair indoor navigation

Ambrougerien project: Autonomous power wheelchair indoor navigation and induction recharge

> Use 2 tags on the wheelchair, 4 anchors in the room for indoor navigation (Merwane Bouri)
> Robust Iterated Extended Kalman Filter for pose estimation with outliers exclusion.









## UWB: Power wheelchair indoor navigation

#### Outlier rejection impact on estimated position

(CNrs)

2 tags on wheelchair, 4 anchors. 2021 summer bootcamp @ Insa







# UWB: Power wheelchair indoor navigation

#### 2022 IH2A summer bootcamp (Insa sports hall)

Autonomous navigation demo.

IRISA 💥 Université Única

(CNrs)

Positioning accuracy tests (4 tags on PWC, 4 anchors). Better than 18.5 cm horiz. (95%) with people moving around.





### UWB: Interval methods for localization (Théo Le Terrier)



We provide an interval-based method for indoor robot localization, using Ultra-Wideband (UWB) sensors.

RSIVIA algorithm is used w.r.t. UWB constraints to compute outer subpavings of the robot pose. Evolution constraints over a horizon are used to contract uncertainty domains computed from these subpavings.



# Channel impulse response estimation

The receiver performs channel impulse response (CIR) estimation by correlation



# Playing with the estimated Channel Impulse Response

#### High rate / low power positioning

• All anchors emit in the time of a single message. Receive once and analyze the CIR for TDoA > Großwindhager et al. (2019), SnapLoc: An Ultra-Fast UWB-Based Indoor Localization System for an Unlimited Number of Tags

#### Single antenna angle of arrival estimation

• With learning and ad hoc antenna or local perturbation from the robot body

> Ledergerber, A. et D'Andrea, R. (2019), "Ultra-Wideband Angle of Arrival Estimation Based on Angle-Dependent Antenna Transfer Function."

#### Radar-like moving objects tracking

> Ledergerber, A. et D'Andrea, R. (2020), "A Multi-Static Radar Network with Ultra-Wideband Radio-Equipped Devices",

#### Use multipath components for enhanced localization

• Learning or geometric approaches with virtual anchor images

#### **Range falsification**

• Shorten of lengthen the measured range by jamming with another UWB emitter to alter the first path detection > Poturalski, M. et al. (2010), "The cicada attack : degradation and denial of service in IR ranging"



### Can we hear the echo?

#### Look for multipath components in the estimated CIR





# Working with Qorvo DWM1001

Module with DW1000 UWB transceiver, nRF52832 Bluetooth  $\mu\text{C},$  motion sensor and antenna.

#### Using the stock RTLS firmware

- Tags, anchors. Network organization and synchronization.
- Up to 10 Hz measurement / positioning rate for tags
- •150 Hz max system rate (nb tags x measurement rate)
- Two-way ranging
- Tags only interrogate 4 anchors (in the best expected geometrical configuration)
- "IoT style" communication (needs a Raspberry Pi server)

#### Custom firmware

- Implement other positioning schemes/protocols (TDoA, ranging between nodes...)
- High rate measurements
- Access to Channel Impulse Response estimate
- Higher speed communication (6.81 Mbps)







#### DWM1001 Dev board

# UWB beacons for robotics

#### Low cost, easy to deploy realtime localization

• Good for teaching too…

#### Expect decimeter level position accuracy in good conditions (LoS)

- Use module and antenna calibration to improve accuracy
- Erroneous measurements (multipath, NLoS) have to be filtered out in cluttered environments

### Use off the shelf Qorvo firmware for basic use

- Only distances to 4 anchors measured at a time
- Computed position is an average of le last 3 epochs
- Limited to 10 Hz

### Need to use or develop custom firmware for more advanced use

- Various measurements protocols / rates
- Access to CIR estimation

# Thank you