
Telekyb3
A free and open architecture for

Aerial Robotics

Gianluca CORSINI, Ingénieur de Recherche CNRS - IRISA Rennes – 24/05/2024

Outline
1. Introduction

2. Hardware
a. Aerial platforms

b. Electronics

3. Software
a. The 3 pillars: git.openrobots.org, robotpkg, genom3

b. Main components

c. Examples of architectures

4. Examples of applications

5. Journée Drones 2024

6. Conclusions 2

1. Introduction
What is Telekyb3?

● a.k.a. TK3 is an “Open-source collection of software (and hardware) for Unmanned Aerial Vehicles”

When and where Telekyb3 is born?

● Around 2015 at LAAS (almost 10y ago!), with few users

Who is using it?

3

Institution LAAS
(Toulouse)

IRISA
(Rennes)

University of
Twente (NL)

Saxion
(NL)

University of
Catania (IT)

Software X X X X X

Hardware X X X X

Users
Active ≥ 5 ≥ 10 ≥ 5 1 1

Over time ≈50 ≈20 ≈10

1. Introduction
What is Telekyb3?

● a.k.a. TK3 is an “Open-source collection of software (and hardware) for Unmanned Aerial Vehicles”

When and where Telekyb3 is born?

● Around 2015 at LAAS (almost 10y ago!), with few users

Who is using it?

4

Institution LAAS
(Toulouse)

IRISA
(Rennes)

University of
Twente (NL)

Saxion
(NL)

University of
Catania (IT)

Software X X X X X

Hardware X X X X

Users
Active ≥ 5 ≥ 10 ≥ 5 1 1

Over time ≈50 ≈20 ≈10

1. Introduction
What is Telekyb3?

● a.k.a. TK3 is an “Open-source collection of software (and hardware) for Unmanned Aerial Vehicles”

When and where Telekyb3 is born?

● Around 2015 at LAAS (almost 10y ago!), with few users

Who is using it?

5

Institution LAAS
(Toulouse)

IRISA
(Rennes)

University of
Twente (NL)

Saxion
(NL)

University of
Catania (IT)

Software X X X X X

Hardware X X X X

Users
Active ≥ 5 ≥ 10 ≥ 5 1 1

Over time ≈50 ≈20 ≈10

Small, but growing community!
≥ 20 users today!

≈ 80 over the years

1. Introduction
What is Telekyb3?

● a.k.a. TK3 is an “Open-source collection of software (and hardware) for Unmanned Aerial Vehicles”

When and where Telekyb3 is born?

● Around 2015 at LAAS (almost 10y ago!), with few users

Who is maintaining it?

6

Institution LAAS
(Toulouse)

IRISA
(Rennes)

University of
Twente (NL)

Saxion
(NL)

University of
Catania (IT)

Software X X

Hardware X X X

Maintainers 3 2 ≈1 – –

1. Introduction
Why Telekyb3?

1. Modularity, Reusability and Interchangeability
○ Several components: each one implementing one (or more) functionality(ies)

○ Interface-based design: components use interfaces to communicate

2. Formal description language
○ Allows software validation and verification, and well-defined behavior

3. Middleware abstraction
○ Component description is unaware of middleware implementation (templates)

4. Low-level access
○ Full control on any low-level component (either hardware or software)

5. Variety of aerial robots
○ Single and multi-robot systems with different rotor configurations

6. Variety of applications 7

1. Introduction
Why Telekyb3?

1. Modularity, Reusability and Interchangeability
○ Several components: each one implementing one (or more) functionality(ies)

○ Interface-based design: components use interfaces to communicate

2. Formal description language
○ Allows software validation and verification, and well-defined behavior

3. Middleware abstraction
○ Component description is unaware of middleware implementation (templates)

4. Low-level access
○ Full control on any low-level component (either hardware or software)

5. Variety of aerial robots
○ Single and multi-robot systems with different rotor configurations

6. Variety of applications 8

1. Introduction
Why Telekyb3?

1. Modularity, Reusability and Interchangeability
○ Several components: each one implementing one (or more) functionality(ies)

○ Interface-based design: components use interfaces to communicate

2. Formal description language
○ Allows software validation and verification, and well-defined behavior

3. Middleware abstraction
○ Component description is unaware of middleware implementation (templates)

4. Low-level access
○ Full control on any low-level component (either hardware or software)

5. Variety of aerial robots
○ Single and multi-robot systems with different rotor configurations

6. Variety of applications 9

1. Introduction
Why Telekyb3?

1. Modularity, Reusability and Interchangeability
○ Several components: each one implementing one (or more) functionality(ies)

○ Interface-based design: components use interfaces to communicate

2. Formal description language
○ Allows software validation and verification, and well-defined behavior

3. Middleware abstraction
○ Component description is unaware of middleware implementation (templates)

4. Low-level access
○ Full control on any low-level component (either hardware or software)

5. Variety of aerial robots
○ Single and multi-robot systems with different rotor configurations

6. Variety of applications 10

1. Introduction
Why Telekyb3?

1. Modularity, Reusability and Interchangeability
○ Several components: each one implementing one (or more) functionality(ies)

○ Interface-based design: components use interfaces to communicate

2. Formal description language
○ Allows software validation and verification, and well-defined behavior

3. Middleware abstraction
○ Component description is unaware of middleware implementation (templates)

4. Low-level access
○ Full control on any low-level component (either hardware or software)

5. Variety of aerial robots
○ Single and multi-robot systems with different rotor configurations

6. Variety of applications 11

1. Introduction
Why Telekyb3?

1. Modularity, Reusability and Interchangeability
○ Several components: each one implementing one (or more) functionality(ies)

○ Interface-based design: components use interfaces to communicate

2. Formal description language
○ Allows software validation and verification, and well-defined behavior

3. Middleware abstraction
○ Component description is unaware of middleware implementation (templates)

4. Low-level access
○ Full control on any low-level component (either hardware or software)

5. Variety of aerial robots
○ Single and multi-robot systems with different rotor configurations

6. Variety of applications 12

2. Hardware
Aerial Robots: under-actuated quad-rotor (a.k.a. QR)

13

● Features:

○ 4 collinear motor-propeller pairs

○ ≈ 1kg take-off mass

● Mechanical components:

○ mainly from Mikrokopter store (still purchasable)

○ 3D printing

● Applications:

○ Indoor and outdoor navigation

○ Vision-based control

○ Human-robot interaction (handover)

● Institutions: LAAS, IRISA

Quad-rotor platform at LAAS (top) and at IRISA (bottom).

2. Hardware
Aerial Robots: fully-actuated hexa-rotor (a.k.a. FiberTHex)

14

● Features:

○ 6 fixedly-titled motor-propeller pairs

○ ≈ 2-3kg take-off mass

● Mechanical parts:

○ Several suppliers (e.g. RS, Mikrokopter, Robotshop)

○ 3D printing

● Applications:

○ Indoor and outdoor navigation

○ Vision-based control

○ Physical interaction with the environment (or

humans)

● Institutions: LAAS, IRISA, UT, SAXION
Hexa-rotor platform at LAAS (top) and at IRISA (bottom).

2. Hardware
Robotic arms: 3-DoF servo-powered

15

● Features:

○ 2-DoF (shoulder) + 1-DoF (elbow)

○ 1:1 weight-2-lift-force ratio → ≈ 1kg lifting mass

○ Dynamixel motors

● Mechanical parts:

○ Several suppliers

○ 3D printing

● Applications:

○ Physical interaction with the environment (or

humans)

● Institutions: LAAS, UTMechanical design of the 3-DoF arm realised at LAAS.

https://www.robotis.us/dynamixel/

2. Hardware
Aerial Manipulators: FiberTHex + 3-DoF arm (a.k.a. FiberTHam)

16

● Features:

○ 9-DoF

○ Propeller guards

● Applications:

○ Physical interaction with the environment (or

humans)

● Institutions: LAAS, UT
The FiberTHam built at LAAS.

(In development) Other robotic arms: 6-DoF brushless-powered (a.k.a. Micrurus)

2. Hardware

17

● Features:

○ 6x 1-DoF cycloidal gear

○ MJbots Moteus ESCs + Brushless motors (T-motor)

● Mechanical parts:

○ Several suppliers

○ 3D printing

● Applications:

○ Physical interaction with the environment (or

humans)

● Institutions: LAAS

A cycloidal gear.
Courtesy of Wikipedia

MJBot Moteus ESCs.

https://en.wikipedia.org/wiki/Cycloidal_drive
https://mjbots.com/products/moteus-r4-11
https://uav-en.tmotor.com/html/UAV/Multirotor/Motors/Antigravity/

2. Hardware
(In development) Other robotic arms: 3-DoF arm based on Solo-12’s leg (IRISA)

● Open Dynamic Robot Initiative

18

J. Marti-Saumell et al. “Borinot: an open thrust-torque-controlled
robot for research on agile aerial-contact motion.” ArXiv
abs/2307.14686 (2023).

Torque-controllable
aerial manipulator

Mechanical design of the Solo-12’s 3-DoF leg.
Courtesy of Open Dynamic Robot Initiative.

https://open-dynamic-robot-initiative.github.io/

Electronics: Overview

2. Hardware

19

2. Hardware
Electronics: Mikrokopter Flight Controller (board v2.1 or v2.5)

20

Mikrokopter Flight Controller board v2.1.
https://gallery3.mikrokopter.de/tech/FC21-best_ckt1

● Manufacturer: Mikrokopter

● Functionalities:

○ AVR 8-bit µC

○ 6-DoF IMU: accelerometer, gyroscope

○ 1 kHz telemetry (motor ~ 100Hz)

○ Serial-2-usb connection to onboard PC

○ Custom firmware: tk3-mikrokopter/mkfl

○ TK3 communication protocol

■ 2µs resolution for RPM command

○ I2C bus for ESCs

● Status: discontinued

● Local stocks: LAAS, IRISA

https://gallery3.mikrokopter.de/tech/FC21-best_ckt1
https://git.openrobots.org/projects/tk3-mikrokopter/repository/tk3-mikrokopter/revisions/master/show/mkfl
https://git.openrobots.org/projects/tk3-mikrokopter/pages/communication

2. Hardware
Electronics: Paparazzi Chimera Flight Controller

21

Paparazzi Chimera Flight Controller board v1.00.
https://wiki.paparazziuav.org/wiki/Chimera/v1.00

● Developer: ENAC

● Functionalities:

○ STM32F7 32bit ARM µC

○ 9-DoF IMU: accelerometer, gyroscope, magnetometer

○ 1 kHz telemetry (motor ~ 100Hz)

○ Serial-2-usb connection to onboard PC

○ Custom firmware: tk3-paparazzi

○ TK3 communication protocol

■ 2µs resolution for RPM command

○ Can devices, I2C, SPI, UARTs, radio controller

● Status: IMU chip is discontinued!

● Local stocks: LAAS, IRISA, UT

https://wiki.paparazziuav.org/wiki/Chimera/v1.00
https://git.openrobots.org/projects/tk3-paparazzi?jump=gollum
https://git.openrobots.org/projects/tk3-mikrokopter/pages/communication

2. Hardware
(Future) Electronics: Paparazzi Tawaki Flight Controller

22

Paparazzi Tawaki Flight Controller board v1.10.
https://wiki.paparazziuav.org/wiki/Tawaki/v1.10

● Developer: ENAC

● Functionalities:

○ Same as Paparazzi Chimera Flight Controller

○ Smaller form factor

○ Support for can-fd devices

● Status: requires minimal firmware adaptation

● Local stocks: –

https://wiki.paparazziuav.org/wiki/Tawaki/v1.10

2. Hardware
Electronics: Mikrokopter ESC

23

Mikrokopter BL-Ctrl v2.0 ESC.
https://gallery3.mikrokopter.de/tech/FC21-best_ckt1

● Manufacturer: Mikrokopter

● Functionalities:

○ (Multi-slave) I2C connection to FC

○ TK3 communication protocol

○ Closed-loop speed control
■ Up to 1kHz (on the ESC)

● Status: discontinued

● Local stock: (good amount) in LAAS, IRISA, UT

https://gallery3.mikrokopter.de/tech/FC21-best_ckt1
https://git.openrobots.org/projects/tk3-mikrokopter/pages/communication

2. Hardware
Electronics: Commercial (Hobbyist) ESCs

24

Aikon AK32 ESC.
https://www.drone-fpv-racer.com/aikon-ak32-35a-6s-e
sc-1969.html

● Manufacturer: any

● Requirements:

○ PWM or DSHOT communication protocol

■ up to 900kHz (i.e. up to DSHOT900)

■ open-loop speed control

○ Bidirectional-DSHOT (shortly Bi-DSHOT)

■ BLHeli-32 firmware

■ closed-loop propeller speed control (from FC)

● Status: in testing at LAAS and UT

● Local stock: (good amount) in LAAS, IRISA, UT

https://www.drone-fpv-racer.com/aikon-ak32-35a-6s-esc-1969.html
https://www.drone-fpv-racer.com/aikon-ak32-35a-6s-esc-1969.html

2. Hardware
Electronics: Onboard PCs

Requirements:

● Run a linux-like operating system (e.g. Ubuntu)
● 1 USB port →Flight controller
● Optionally (and conveniently) with WiFi →for remote interaction from another machine

25

From left to right: Odroid C2, Odroid XU4, Intel NUC, Jetson Nano.

Electronics: Sensors and peripherals

Flight Controller:

● Onboard

○ IMU [+ magnetometer]

● CAN

○ FT sensors: IIT FT45 (discontinued)

Onboard PC:

● USB
○ GPS RTK

○ Cameras: realsense D435 and T265

○ FT sensors: Botasys (MiniOne and Medusa under testing)

○ Dynamixel motors

○ Arduino boards

2. Hardware

26

IIT FT45

Botasys MiniOne

Intel Realsense D435 (left) and T265 (left)

Drotek Sirius RTK GNSS Rover

Dynamixel MX-28

Taranis
Radio Controller

Example of hardware architecture of a quad-rotor

2. Hardware

27

Example of hardware architecture of an hexa-rotor

2. Hardware

28

3. Software
The 3 “pillars” of the Telekyb3 software architecture:

● Part of the git.openrobots.org project

○ “Robotics Open Source Software developed at CNRS/LAAS”

● Delivered by means of robotpkg

○ Compilation from source on host CPU

○ Provides a PPA and binary packages for debian-based systems (.deb)

○ Stable versions of the software and regular releases (typically >1 per year)

● Heavily based on Genom3

○ “[...] a tool to design real-time software architectures”

29

http://git.openrobots.org
http://robotpkg.openrobots.org
https://git.openrobots.org/projects/genom3?jump=welcome

3. Software
The 3 “pillars” of the Telekyb3 software architecture:

● Part of the git.openrobots.org project

○ “Robotics Open Source Software developed at CNRS/LAAS”

● Delivered by means of robotpkg

○ Compilation from source on host CPU

○ Provides a PPA and binary packages for debian-based systems (.deb)

○ Stable versions of the software and regular releases (typically >1 per year)

● Heavily based on Genom3

○ “[...] a tool to design real-time software architectures”

30

http://git.openrobots.org
http://robotpkg.openrobots.org
https://git.openrobots.org/projects/genom3?jump=welcome

3. Software
The 3 “pillars” of the Telekyb3 software architecture:

● Part of the git.openrobots.org project

○ “Robotics Open Source Software developed at CNRS/LAAS”

● Delivered by means of robotpkg

○ Compilation from source on host CPU

○ Provides a PPA and binary packages for debian-based systems (.deb)

○ Stable versions of the software and regular releases (typically >1 per year)

● Heavily based on Genom3

○ “[...] a tool to design real-time software architectures”

31

http://git.openrobots.org
http://robotpkg.openrobots.org
https://git.openrobots.org/projects/genom3?jump=welcome

3. Software
The 3 “pillars” of the Telekyb3 software architecture:

● Part of the git.openrobots.org project

○ “Robotics Open Source Software developed at CNRS/LAAS”

● Delivered by means of robotpkg

○ Compilation from source on host CPU

○ Provides a PPA and binary packages for debian-based systems (.deb)

○ Stable versions of the software and regular releases (typically >1 per year)

● Heavily based on Genom3

○ “[...] a tool to design real-time software architectures”

32

http://git.openrobots.org
http://robotpkg.openrobots.org
https://git.openrobots.org/projects/genom3?jump=welcome

Genom3

● Tool designed to write independent and reusable components
○ Component = “[...] a server that provides a number of services and communicates through data ports

with other components in the system”

○ component description files (data types, services, ports)

● Middleware abstraction
○ Templates to select target middleware (e.g., pocoLibs, ROS, Yarp, …)

● Source code automatically generated

○ Target middleware

○ Main component routines

● Allow interfacing with external clients (user applications)

○ Genomix: abstraction interface

○ Scripting in different programming languages: TCL, Python, MATLAB/Simulink

3. Software

33

Genom3

● Tool designed to write independent and reusable components
○ Component = “[...] a server that provides a number of services and communicates through data ports

with other components in the system”

○ component description files (data types, services, ports)

● Middleware abstraction
○ Templates to select target middleware (e.g., pocoLibs, ROS, Yarp, …)

● Source code automatically generated

○ Target middleware

○ Main component routines

● Allow interfacing with external clients (user applications)

○ Genomix: abstraction interface

○ Scripting in different programming languages: TCL, Python, MATLAB/Simulink

3. Software

34

Genom3

● Tool designed to write independent and reusable components
○ Component = “[...] a server that provides a number of services and communicates through data ports

with other components in the system”

○ component description files (data types, services, ports)

● Middleware abstraction
○ Templates to select target middleware (e.g., pocoLibs, ROS, Yarp, …)

● Source code automatically generated

○ Target middleware

○ Main component routines

● Allow interfacing with external clients (user applications)

○ Genomix: abstraction interface

○ Scripting in different programming languages: TCL, Python, MATLAB/Simulink

3. Software

35

Genom3

● Tool designed to write independent and reusable components
○ Component = “[...] a server that provides a number of services and communicates through data ports

with other components in the system”

○ component description files (data types, services, ports)

● Middleware abstraction
○ Templates to select target middleware (e.g., pocoLibs, ROS, Yarp, …)

● Source code automatically generated

○ Target middleware

○ Main component routines

● Allow interfacing with external clients (user applications)

○ Genomix: abstraction interface

○ Scripting in different programming languages: TCL, Python, MATLAB/Simulink

3. Software

36

Genom3

The user needs to:

1. Write the component description file (.gen)

2. Run the skeleton generation engine (i.e., ‘$ genom3 skeleton component.gen’)

3. Write implementation of services as elementary bits of code (a.k.a. codels)

4. Build the component for the desired middleware

○ The configuration (configure) and compilation scripts (Makefiles) are automatically generated!

○ Based on the autotools toolchain

5. Run the component and the desired middleware

6. Use genomix within scripts for interfacing with the components, e.g.:

○ Read output ports

○ Call services (set/get parameters, control component execution, …)

3. Software

37

3. Software

38

A Genom3 component structure

1. IDS

2. Ports

3. Tasks

4. Services

5. Codels

3. Software

39

Example of component description file (.gen): demo-genom3
demoStruct.idl:

https://git.openrobots.org/projects/demo/repository/demo-genom3/revisions/master/entry/demo.gen

3. Software

40

Example of component description file (.gen): demo-genom3

https://git.openrobots.org/projects/demo/repository/demo-genom3/revisions/master/entry/demo.gen

3. Software

41

Example of component description file (.gen): demo-genom3

https://git.openrobots.org/projects/demo/repository/demo-genom3/revisions/master/entry/demo.gen

3. Software

42

Example of component description file (.gen): demo-genom3

codel files:

https://git.openrobots.org/projects/demo/repository/demo-genom3/revisions/master/entry/demo.gen

3. Software

43

Example of component description file (.gen): demo-genom3

codel files:

https://git.openrobots.org/projects/demo/repository/demo-genom3/revisions/master/entry/demo.gen

3. Software

44

Example of component description file (.gen): demo-genom3

codel files:

https://git.openrobots.org/projects/demo/repository/demo-genom3/revisions/master/entry/demo.gen

3. Software

45

Example of component description file (.gen): demo-genom3

codel files:

https://git.openrobots.org/projects/demo/repository/demo-genom3/revisions/master/entry/demo.gen

3. Software

46

Example of component description file (.gen): demo-genom3

https://git.openrobots.org/projects/demo/repository/demo-genom3/revisions/master/entry/demo.gen

3. Software

47

Genomix: daemon server (genomixd) + client (<language>-genomix)

where <language> = [tcl | python | matlab] , e.g. python-genomix

where <middleware> = [ROS | pocoLibs | YARP …]

3. Software

48

Main TK3 Genom3 components

● Control:
○ nhfc-genom3: cascade PID for under-actuated aerial vehicles
○ uavpos/uavatt-genom3: positional and attitude controllers for fully-actuated aerial vehicles
○ phynt-genom3: admittance filter + wrench observer

● Estimation:
○ pom-genom3: Uscented Kalman Filtering

● Motion:
○ maneuver-genom3: kinematic trajectory generator

● Robot interfaces:
○ rotorcraft-genom3: interface with low-level hardware (flight-controller)

● Sensors:
○ optitrack/qualisys/vicon-genom3: interface with Motion Capture Systems
○ realsense-genom3: interface with Intel Realsense cameras
○ gps-genom3: interface with GPS modules
○ dynamixel-genom3: interface with Dynamixel motors

3. Software

49

Example of software

architecture for a

quad-rotor

(in real experiments!)

3. Software

50

Example of software

architecture for an

 hexa-rotor

(in real experiments!)

3. Software

51

What about simulation?

● Main simulator: Gazebo

● Several plugins
○ mrsim-gazebo: simulates a generic multi-rotor aerial vehicle

■ also TK3 low-level hardware, i.e., FC, ESCs, motor dynamics

○ optitrack-gazebo: simulates an Optitrack motion capture system
■ natnet stream (optitrack protocol)

○ dxsim-gazebo: simulates a chain of Dynamixel motors
■ RAM, EPPROM, communication protocol

● Other Genom3 components for simulation

○ gazebocam-genom3: streams a camera sensor of Gazebo

○ gazeboft-genom3: steams wrench from a force-torque sensor of Gazebo

● Seamless simulations-2-experiments transition

○ Usage of interfaces allows interchanging real and simulated hardware (or other components)

3. Software

52

Example of software

architecture for a

quad-rotor

in simulation

NB: PC = localhost!

3. Software

53

Example of software

architecture for an

hexa-rotor

in simulation

NB: PC = localhost!

4. Examples of applications

54

Indoor (left) and outdoor (right) navigation

Courtesy of Felix Ingrand.

Software validation and verification through
Genom3 template for the FIACRE language.

Courtesy of Felix Ingrand.

http://www.youtube.com/watch?v=3Ok_c-ATY8I
https://docs.google.com/file/d/1l2vbhgOoKmCHmXMij0rJpxnjJ6kCJqIg/preview
https://redmine.laas.fr/projects/genom3-fiacre-template/pages/index

4. Examples of applications

55

Physical interaction with the environment

● Pick-and place

● Aerial drawing

Experiments at LAAS: Autonomous pick-and-place application.
G. Corsini et al.. A General Control Architecture for Visual Servoing
and Physical Interaction Tasks for Fully-actuated Aerial Vehicles.
AIRPHARO 2021.

Experiments at IRISA: aerial drawing with a fully-actuated multi-rotor
aerial vehicle.

https://docs.google.com/file/d/1i0sXkhyv87dEtWhONe45YzQqxXg90_vR/preview
http://www.youtube.com/watch?v=9Efwnr0apaQ

4. Examples of applications

56

Physical Human-Aerial robot Interaction

● Human-2-robot handover

Experiments at University of Twente (the Netherlands): human-to-aerial-robot handover.
 A. Afifi et al.. Physical Human-Aerial Robot Interaction and Collaboration: Exploratory
Results and Lessons Learned. ICUAS 2023.

http://www.youtube.com/watch?v=LrQxXbQ5IHc

4. Examples of applications

57

Agile navigation with a multi-robot system

● Flycrane = 3x QR + payload platform + cables

Experiments at IRISA: agile trajectory tracking with the Flycrane system.

https://docs.google.com/file/d/1-zuN31sX9B57rC5nmgXJAC9X_Cp31aYg/preview

Practical session:

● Simulations in Gazebo

○ Under-actuated Quad-rotor flight

○ Under-actuated Hexa-rotor flight

○ Fully-actuated Hexa-rotor flight

● (Possibly) Indoor Experiment

○ Fully-actuated Hexa-rotor flight

5. Journée Drones 2024

58

Practical session:

● Simulations in Gazebo

○ Under-actuated Quad-rotor flight

○ Under-actuated Hexa-rotor flight

○ Fully-actuated Hexa-rotor flight

● (Possibly) Indoor Experiment

○ Fully-actuated Hexa-rotor flight

5. Journée Drones 2024

59

6. Conclusions

60

Reasons to consider TK3:

● Growing community

● Modular architecture

● Full-access to low-level hardware

● Open-source

● Single and multi-robot systems

● Adaptation to any application

Reasons to NOT consider TK3:

● Requires basic understanding of underlying

architecture and tools

● Not really user-friendly
○ Requires a bit of motivation and dedication

○ PhD-friendly: students willing to add their own

functionalities to the basic framework

6. Conclusions

61

Reasons to consider TK3:

● Growing community

● Modular architecture

● Full-access to low-level hardware

● Open-source

● Single and multi-robot systems

● Adaptation to any application

Reasons to NOT consider TK3:

● Requires basic understanding of underlying

architecture and tools

● Not really user-friendly
○ Requires a bit of motivation and dedication

○ PhD-friendly: students willing to add their own

functionalities to the basic framework

6. Conclusions

62

Future directions:

● Hardware availability

● Open-hardware → release platform designs

● New ESC alternative →closed-loop speed control, high-frequency telemetry

● Control of aerial manipulators →whole-body and optimization-based control

● Testing the components related to vision →realsense cameras

Eager to join the TK3 community?

63

● Element chat → https://matrix.to/#/#art:laas.fr

● Official project → https://git.openrobots.org/projects/telekyb3
○ Documentation and tutorials (ongoing)

https://git.openrobots.org/projects/telekyb3/pages/index

○ BSD-like license

● ART Meetings
○ Monthly meetings between institutions to discuss status, progress, and future development

● Feel free to make questions and open issues → git.openrobots.org

https://git.openrobots.org/projects/telekyb3
https://git.openrobots.org/projects/telekyb3/pages/index
https://git.openrobots.org

Thanks for your attention!

Any question?

64

